Suppr超能文献

稳健地提取协变量信息,以提高随机试验中的估计效率。

Robust extraction of covariate information to improve estimation efficiency in randomized trials.

机构信息

Division of Biostatistics, School of Public Health, University of California Berkeley, 101 Haviland Hall, Berkeley, CA 94720, USA.

出版信息

Stat Med. 2011 Aug 30;30(19):2389-408. doi: 10.1002/sim.4301. Epub 2011 Jul 12.

Abstract

In randomized trials, investigators typically rely upon an unadjusted estimate of the mean outcome within each treatment arm to draw causal inferences. Statisticians have underscored the gain in efficiency that can be achieved from covariate adjustment in randomized trials with a focus on problems involving linear models. Despite recent theoretical advances, there has been a reluctance to adjust for covariates based on two primary reasons: (i) covariate-adjusted estimates based on conditional logistic regression models have been shown to be less precise and (ii) concern over the opportunity to manipulate the model selection process for covariate adjustments to obtain favorable results. In this paper, we address these two issues and summarize recent theoretical results on which is based a proposed general methodology for covariate adjustment under the framework of targeted maximum likelihood estimation in trials with two arms where the probability of treatment is 50%. The proposed methodology provides an estimate of the true causal parameter of interest representing the population-level treatment effect. It is compared with the estimates based on conditional logistic modeling, which only provide estimates of subgroup-level treatment effects rather than marginal (unconditional) treatment effects. We provide a clear criterion for determining whether a gain in efficiency can be achieved with covariate adjustment over the unadjusted method. We illustrate our strategy using a resampled clinical trial dataset from a placebo controlled phase 4 study. Results demonstrate that gains in efficiency can be achieved even with binary outcomes through covariate adjustment leading to increased statistical power.

摘要

在随机试验中,研究人员通常依赖于每个治疗组中未经调整的平均结果估计值来得出因果推论。统计学家强调了在关注涉及线性模型的问题时,通过协变量调整可以在随机试验中获得的效率提高。尽管最近在理论上取得了进展,但仍存在两个主要原因不愿意基于协变量进行调整:(i)基于条件逻辑回归模型的协变量调整估计值被证明不够精确;(ii)担心有机会操纵模型选择过程,以对协变量进行调整,从而获得有利的结果。在本文中,我们解决了这两个问题,并总结了最近的理论结果,这些结果是基于针对两臂试验中协变量调整的拟议总体方法的理论依据,其中治疗的概率为 50%。所提出的方法提供了对感兴趣的真实因果参数的估计,代表了人群水平的治疗效果。它与基于条件逻辑建模的估计值进行了比较,后者仅提供亚组水平的治疗效果估计值,而不是边缘(无条件)治疗效果估计值。我们提供了一个明确的标准,用于确定协变量调整是否可以相对于未调整方法提高效率。我们使用来自安慰剂对照的 4 期研究的重采样临床试验数据集说明了我们的策略。结果表明,即使对于二项结果,通过协变量调整也可以提高效率,从而提高统计能力。

相似文献

5
Empirical likelihood inference in randomized clinical trials.随机临床试验中的经验似然推断。
Stat Methods Med Res. 2018 Dec;27(12):3770-3784. doi: 10.1177/0962280217711205. Epub 2017 Jul 5.

引用本文的文献

本文引用的文献

5
Asymptotic optimality of likelihood-based cross-validation.基于似然的交叉验证的渐近最优性。
Stat Appl Genet Mol Biol. 2004;3:Article4. doi: 10.2202/1544-6115.1036. Epub 2004 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验