Peccoud Jean, Chebbi Mohamed Amine, Cormier Alexandre, Moumen Bouziane, Gilbert Clément, Marcadé Isabelle, Chandler Christopher, Cordaux Richard
Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7267, Université de Poitiers, 86000 France
Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7267, Université de Poitiers, 86000 France.
Genetics. 2017 Sep;207(1):269-280. doi: 10.1534/genetics.117.203380. Epub 2017 Jul 5.
The highly compact mitochondrial (mt) genome of terrestrial isopods (Oniscidae) presents two unusual features. First, several loci can individually encode two tRNAs, thanks to single nucleotide polymorphisms at anticodon sites. Within-individual variation (heteroplasmy) at these loci is thought to have been maintained for millions of years because individuals that do not carry all tRNA genes die, resulting in strong balancing selection. Second, the oniscid mtDNA genome comes in two conformations: a ∼14 kb linear monomer and a ∼28 kb circular dimer comprising two monomer units fused in palindrome. We hypothesized that heteroplasmy actually results from two genome units of the same dimeric molecule carrying different tRNA genes at mirrored loci. This hypothesis, however, contradicts the earlier proposition that dimeric molecules result from the replication of linear monomers-a process that should yield totally identical genome units within a dimer. To solve this contradiction, we used the SMRT (PacBio) technology to sequence mirrored tRNA loci in single dimeric molecules. We show that dimers do present different tRNA genes at mirrored loci; thus covalent linkage, rather than balancing selection, maintains vital variation at anticodons. We also leveraged unique features of the SMRT technology to detect linear monomers closed by hairpins and carrying noncomplementary bases at anticodons. These molecules contain the necessary information to encode two tRNAs at the same locus, and suggest new mechanisms of transition between linear and circular mtDNA. Overall, our analyses clarify the evolution of an atypical mt genome where dimerization counterintuitively enabled further mtDNA compaction.
陆生等足类动物(潮虫科)高度紧凑的线粒体(mt)基因组呈现出两个不同寻常的特征。首先,由于反密码子位点的单核苷酸多态性,几个基因座能够各自编码两种tRNA。这些基因座的个体内变异(异质性)被认为已经维持了数百万年,因为不携带所有tRNA基因的个体会死亡,从而导致强烈的平衡选择。其次,潮虫的线粒体DNA基因组有两种构象:一种约14 kb的线性单体和一种约28 kb的环状二聚体,后者由两个以回文形式融合的单体单元组成。我们推测,异质性实际上是由同一二聚体分子的两个基因组单元在镜像位点携带不同的tRNA基因导致的。然而,这一假设与早期的观点相矛盾,即二聚体分子是由线性单体复制产生的——这一过程应该会在二聚体内产生完全相同的基因组单元。为了解决这一矛盾,我们使用单分子实时(PacBio)技术对单个二聚体分子中的镜像tRNA基因座进行测序。我们发现,二聚体在镜像位点确实存在不同的tRNA基因;因此,共价连接而非平衡选择维持了反密码子处的重要变异。我们还利用了单分子实时技术的独特特性,检测到由发夹封闭且在反密码子处携带非互补碱基的线性单体。这些分子包含在同一基因座编码两种tRNA的必要信息,并提示了线性和环状线粒体DNA之间转换的新机制。总体而言,我们的分析阐明了一个非典型线粒体基因组的进化过程,其中二聚化出人意料地促进了线粒体DNA的进一步压缩。