Abdeljawad Thabet
Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Kingdom of Saudi Arabia.
J Inequal Appl. 2017;2017(1):130. doi: 10.1186/s13660-017-1400-5. Epub 2017 Jun 5.
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order [Formula: see text] in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
在本文中,我们将具有非奇异米塔格 - 莱夫勒核的分数阶算子(这是阿坦加纳和巴莱亚努最近发起的一项研究)从阶数[公式:见原文]扩展到更高的任意阶数,并构建它们相应的积分算子。我们通过使用巴拿赫压缩定理证明了卡普托([公式:见原文])型和黎曼([公式:见原文])型初值问题的存在性和唯一性定理。然后,我们在米塔格 - 莱夫勒核的框架下,证明了关于阶数为[公式:见原文]的黎曼型分数阶边值问题的一个李雅普诺夫型不等式。分析了说明性示例,并给出了关于这种分数阶微积分意义下的斯特姆 - 刘维尔特征值问题的一个应用。