Shabbir Sana, Shah Kamal, Abdeljawad Thabet
Department of Mathematics, COMSATS University of Islamabad, Sahiwal Campus, Punjab, Pakistan.
Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan.
Adv Differ Equ. 2021;2021(1):395. doi: 10.1186/s13662-021-03551-1. Epub 2021 Aug 24.
Some fundamental conditions and hypotheses are established to ensure the existence, uniqueness, and stability to a class of implicit boundary value problems (BVPs) with Atangana-Baleanu-Caputo type derivative and integral. The required results are established by utilizing the Banach contraction mapping principle and fixed point theorem of Krasnoselskii. In addition, various types of stability results including Hyers-Ulam, generalized Hyers-Ulam, Hyers-Ulam-Rassias, and generalized Hyers-Ulam-Rassias stability are formulated for the problem under consideration. Pertinent examples are given to justify the results we obtain.
建立了一些基本条件和假设,以确保一类具有阿坦加纳 - 巴莱亚努 - 卡普托型导数和积分的隐式边值问题(BVP)的存在性、唯一性和稳定性。利用巴拿赫压缩映射原理和克拉索夫斯基不动点定理建立了所需的结果。此外,针对所考虑的问题,给出了包括赫尔斯 - 乌拉姆、广义赫尔斯 - 乌拉姆、赫尔斯 - 乌拉姆 - 拉西亚斯和广义赫尔斯 - 乌拉姆 - 拉西亚斯稳定性在内的各种稳定性结果。给出了相关例子以证明我们所得到的结果。