Ruggiero Rafael N, Rossignoli Matheus T, De Ross Jana B, Hallak Jaime E C, Leite Joao P, Bueno-Junior Lezio S
Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.
National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil.
Front Pharmacol. 2017 Jun 21;8:399. doi: 10.3389/fphar.2017.00399. eCollection 2017.
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB and TRPV agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
我们对精神分裂症中内源性大麻素系统的许多了解都来自于对啮齿动物的行为测量,比如听觉惊吓的前脉冲抑制和旷场运动,这些测量通常与神经化学方法或药物激发设计一起使用。此类方法持续描绘感觉运动门控、运动亢进、社交互动以及潜在的单胺能、谷氨酸能和γ-氨基丁酸能紊乱的基本机制。然而,这些策略将需要更多地使用神经生理学工具,以便为临床研究提供更好的信息。从这个意义上说,电生理学和基于病毒载体的电路剖析,如光遗传学,可以进一步阐明外源性大麻素如何加重(如四氢大麻酚,THC)或改善(如大麻二酚,CBD)精神分裂症症状,如幻觉、妄想和认知缺陷。此外,最近的研究指出了内源性大麻素-内源性香草酸之间的复杂相互作用,包括花生四烯乙醇胺(内源性CB和TRPV激动剂)对认知变量的影响,如厌恶记忆消退。事实上,人们对TRPV受体作为有前景的治疗靶点的兴趣与日俱增。在此,我们将重点围绕神经生理学证据对这些问题进行综述。首先,我们将人类的成像和电图研究结果置于背景中进行考量。然后,我们对啮齿动物的电生理学进行全面综述。最后,我们将讨论基础研究如何通过进一步结合精神药理学和神经生理学工具而受益。