Suppr超能文献

CRY1/2选择性抑制PPARδ并限制运动能力。

CRY1/2 Selectively Repress PPARδ and Limit Exercise Capacity.

作者信息

Jordan Sabine D, Kriebs Anna, Vaughan Megan, Duglan Drew, Fan Weiwei, Henriksson Emma, Huber Anne-Laure, Papp Stephanie J, Nguyen Madelena, Afetian Megan, Downes Michael, Yu Ruth T, Kralli Anastasia, Evans Ronald M, Lamia Katja A

机构信息

Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Cell Metab. 2017 Jul 5;26(1):243-255.e6. doi: 10.1016/j.cmet.2017.06.002.

Abstract

Cellular metabolite balance and mitochondrial function are under circadian control, but the pathways connecting the molecular clock to these functions are unclear. Peroxisome proliferator-activated receptor delta (PPARδ) enables preferential utilization of lipids as fuel during exercise and is a major driver of exercise endurance. We show here that the circadian repressors CRY1 and CRY2 function as co-repressors for PPARδ. Cry1;Cry2 myotubes and muscles exhibit elevated expression of PPARδ target genes, particularly in the context of exercise. Notably, CRY1/2 seem to repress a distinct subset of PPARδ target genes in muscle compared to the co-repressor NCOR1. In vivo, genetic disruption of Cry1 and Cry2 enhances sprint exercise performance in mice. Collectively, our data demonstrate that CRY1 and CRY2 modulate exercise physiology by altering the activity of several transcription factors, including CLOCK/BMAL1 and PPARδ, and thereby alter energy storage and substrate selection for energy production.

摘要

细胞代谢物平衡和线粒体功能受昼夜节律控制,但连接分子时钟与这些功能的途径尚不清楚。过氧化物酶体增殖物激活受体δ(PPARδ)能在运动期间使机体优先利用脂质作为燃料,并且是运动耐力的主要驱动因素。我们在此表明,昼夜节律抑制因子CRY1和CRY2作为PPARδ的共抑制因子发挥作用。Cry1;Cry2肌管和肌肉中PPARδ靶基因的表达升高,尤其是在运动的情况下。值得注意的是,与共抑制因子NCOR1相比,CRY1/2似乎在肌肉中抑制PPARδ靶基因的一个不同子集。在体内,Cry1和Cry2的基因破坏增强了小鼠的短跑运动表现。总体而言,我们的数据表明,CRY1和CRY2通过改变包括CLOCK/BMAL1和PPARδ在内的几种转录因子的活性来调节运动生理学,从而改变能量储存和能量产生的底物选择。

相似文献

2
Cryptochromes Suppress HIF1α in Muscles.隐花色素抑制肌肉中的缺氧诱导因子1α 。
iScience. 2020 Jul 24;23(7):101338. doi: 10.1016/j.isci.2020.101338. Epub 2020 Jul 3.
4
Suppression of circadian clock protein cryptochrome 2 promotes osteoarthritis.昼夜节律时钟蛋白隐花色素2的抑制会促进骨关节炎。
Osteoarthritis Cartilage. 2020 Jul;28(7):966-976. doi: 10.1016/j.joca.2020.04.004. Epub 2020 Apr 24.
8
Critical cholangiocarcinogenesis control by cryptochrome clock genes.隐花色素时钟基因对胆管癌发生的关键调控
Int J Cancer. 2017 Jun 1;140(11):2473-2483. doi: 10.1002/ijc.30663. Epub 2017 Mar 16.

引用本文的文献

3
The metabolic significance of peripheral tissue clocks.外周组织生物钟的代谢意义。
Commun Biol. 2025 Mar 26;8(1):497. doi: 10.1038/s42003-025-07932-0.
4
Peroxisome proliferator-activated receptor delta and liver diseases.过氧化物酶体增殖物激活受体δ与肝脏疾病
Hepatol Commun. 2025 Feb 3;9(2). doi: 10.1097/HC9.0000000000000646. eCollection 2025 Feb 1.

本文引用的文献

2
CRY2 and FBXL3 Cooperatively Degrade c-MYC.CRY2和FBXL3协同降解c-MYC。
Mol Cell. 2016 Nov 17;64(4):774-789. doi: 10.1016/j.molcel.2016.10.012. Epub 2016 Nov 10.
5
Rhythmic Oxygen Levels Reset Circadian Clocks through HIF1α.节律性氧水平通过 HIF1α 重置生物钟。
Cell Metab. 2017 Jan 10;25(1):93-101. doi: 10.1016/j.cmet.2016.09.014. Epub 2016 Oct 20.
8
Metabolic regulation of mitochondrial dynamics.线粒体动力学的代谢调控
J Cell Biol. 2016 Feb 15;212(4):379-87. doi: 10.1083/jcb.201511036. Epub 2016 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验