文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于组织模拟 3D 打印的经导管主动脉瓣置换术后瓣周漏的定量预测。

Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing.

机构信息

Department of Cardiovascular Imaging, Piedmont Heart Institute, Atlanta, Georgia; Marcus Heart Valve Center, Piedmont Heart Institute, Atlanta, Georgia.

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia; Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia.

出版信息

JACC Cardiovasc Imaging. 2017 Jul;10(7):719-731. doi: 10.1016/j.jcmg.2017.04.005.


DOI:10.1016/j.jcmg.2017.04.005
PMID:28683947
Abstract

OBJECTIVES: This study aimed to develop a procedure simulation platform for in vitro transcatheter aortic valve replacement (TAVR) using patient-specific 3-dimensional (3D) printed tissue-mimicking phantoms. We investigated the feasibility of using these 3D printed phantoms to quantitatively predict the occurrence, severity, and location of any degree of post-TAVR paravalvular leaks (PVL). BACKGROUND: We have previously shown that metamaterial 3D printing technique can be used to create patient-specific phantoms that mimic the mechanical properties of biological tissue. This may have applications in procedural planning for cardiovascular interventions. METHODS: This retrospective study looked at 18 patients who underwent TAVR. Patient-specific aortic root phantoms were created using the tissue-mimicking 3D printing technique using pre-TAVR computed tomography. The CoreValve (self-expanding valve) prostheses were deployed in the phantoms to simulate the TAVR procedure, from which post-TAVR aortic root strain was quantified in vitro. A novel index, the annular bulge index, was measured to assess the post-TAVR annular strain unevenness in the phantoms. We tested the comparative predictive value of the bulge index and other known predictors of post-TAVR PVL. RESULTS: The maximum annular bulge index was significantly different among patient subgroups that had no PVL, trace-to-mild PVL, and moderate-to-severe PVL (p = 0.001). Compared with other known PVL predictors, bulge index was the only significant predictor of moderate-severe PVL (area under the curve = 95%; p < 0.0001). Also, in 12 patients with post-TAVR PVL, the annular bulge index predicted the major PVL location in 9 patients (accuracy = 75%). CONCLUSIONS: In this proof-of-concept study, we have demonstrated the feasibility of using 3D printed tissue-mimicking phantoms to quantitatively assess the post-TAVR aortic root strain in vitro. A novel indicator of the post-TAVR annular strain unevenness, the annular bulge index, outperformed the other established variables and achieved a high level of accuracy in predicting post-TAVR PVL, in terms of its occurrence, severity, and location.

摘要

目的:本研究旨在开发一种基于患者特定 3 维(3D)打印组织模拟模型的经导管主动脉瓣置换术(TAVR)手术模拟平台。我们研究了使用这些 3D 打印模型来定量预测任何程度 TAVR 瓣周漏(PVL)发生、严重程度和位置的可行性。

背景:我们之前已经证明,超材料 3D 打印技术可用于创建模拟生物组织力学性能的患者特定模型。这可能在心血管介入治疗的手术规划中有应用。

方法:这项回顾性研究纳入了 18 名接受 TAVR 的患者。使用组织模拟 3D 打印技术,根据术前 TAVR 计算机断层扫描,创建患者特定的主动脉根部模型。在模型中部署 CoreValve(自膨式瓣膜)假体以模拟 TAVR 手术,从体外量化 TAVR 后的主动脉根部应变。测量了一种新的指标,即瓣环膨出指数,以评估模型中 TAVR 后的瓣环应变不均匀性。我们测试了膨出指数和其他已知的 TAVR PVL 预测因子的比较预测价值。

结果:在无 PVL、微量至轻度 PVL 和中度至重度 PVL 的患者亚组之间,最大瓣环膨出指数有显著差异(p = 0.001)。与其他已知的 PVL 预测因子相比,膨出指数是唯一能显著预测中重度 PVL 的因子(曲线下面积 95%;p < 0.0001)。此外,在 12 名 TAVR 后有 PVL 的患者中,9 名患者的瓣环膨出指数预测了主要的 PVL 位置(准确性 75%)。

结论:在这项概念验证研究中,我们已经证明了使用 3D 打印组织模拟模型在体外定量评估 TAVR 后主动脉根部应变的可行性。瓣环膨出指数是一种新的瓣环应变不均匀的指标,在预测 TAVR 后 PVL 的发生、严重程度和位置方面,其表现优于其他已建立的变量,且具有较高的准确性。

相似文献

[1]
Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing.

JACC Cardiovasc Imaging. 2017-7

[2]
Pre-procedural fit-testing of TAVR valves using parametric modeling and 3D printing.

J Cardiovasc Comput Tomogr. 2018-10-2

[3]
3-Dimensional printing to predict paravalvular regurgitation after transcatheter aortic valve replacement.

Catheter Cardiovasc Interv. 2020-12

[4]
Impact of Aortic Root Anatomy and Geometry on Paravalvular Leak in Transcatheter Aortic Valve Replacement With Extremely Large Annuli Using the Edwards SAPIEN 3 Valve.

JACC Cardiovasc Interv. 2018-6-27

[5]
Anatomical risk models for paravalvular leak and landing zone complications for balloon-expandable transcatheter aortic valve replacement.

Catheter Cardiovasc Interv. 2017-10-1

[6]
Techniques and outcomes of paravalvular leak repair after transcatheter aortic valve replacement.

Catheter Cardiovasc Interv. 2017-11-1

[7]
3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement.

J Cardiovasc Comput Tomogr. 2016

[8]
Potential impact of dynamic automated CT aortic annular measurements on outcomes for transcatheter aortic valve replacement sizing.

Int J Cardiovasc Imaging. 2020-11

[9]
Self-Expanding Transcatheter Aortic Valve Replacement Versus Surgical Valve Replacement in Patients at High Risk for Surgery: A Study of Echocardiographic Change and Risk Prediction.

Circ Cardiovasc Interv. 2016-6

[10]
Predictors for Paravalvular Regurgitation After TAVR With the Self-Expanding Prosthesis: Quantitative Measurement of MDCT Analysis.

JACC Cardiovasc Imaging. 2016-10

引用本文的文献

[1]
A 3D Printing-Based Transcatheter Pulmonary Valve Replacement Simulator: Development and Validation.

Bioengineering (Basel). 2025-3-26

[2]
Transcatheter closure of paravalvular leakage through multiple approaches after surgical mechanical valve replacements: A retrospective study.

Medicine (Baltimore). 2024-11-22

[3]
Left Atrial Appendage Occlusion: Current Stroke Prevention Strategies and a Shift Toward Data-Driven, Patient-Specific Approaches.

J Soc Cardiovasc Angiogr Interv. 2022-7-13

[4]
Artificial Intelligence in the Screening, Diagnosis, and Management of Aortic Stenosis.

Rev Cardiovasc Med. 2024-1-17

[5]
Rapid segmentation of computed tomography angiography images of the aortic valve: the efficacy and clinical value of a deep learning algorithm.

Front Bioeng Biotechnol. 2024-5-30

[6]
The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future.

J Pers Med. 2024-3-30

[7]
Preprocedural Planning of Left Atrial Appendage Occlusion: A Review of the Use of Additive Manufacturing.

3D Print Addit Manuf. 2024-2-1

[8]
A benchmark study of convolutional neural networks in fully automatic segmentation of aortic root.

Front Bioeng Biotechnol. 2023-6-15

[9]
Mitral Paravalvular Leak 3D Printing from 3D-Transesophageal Echocardiography.

Anatol J Cardiol. 2023-9-30

[10]
Advances in Imaging for Tricuspid Transcatheter Edge-to-Edge Repair: Lessons Learned and Future Perspectives.

J Clin Med. 2023-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索