University of Minnesota Fairview Medical Center, Minneapolis, Minnesota.
Department of Surgery, The Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota.
Catheter Cardiovasc Interv. 2020 Dec;96(7):E703-E710. doi: 10.1002/ccd.28783. Epub 2020 Feb 20.
There is no effective method to predict paravalvular regurgitation prior to transcatheter aortic valve replacement (TAVR).
We retrospectively analyzed pre-TAVR computed tomography (CT) scans of 20 patients who underwent TAVR for severe, calcific aortic stenosis and subsequently printed 3-dimensional (3D) aortic root models of each patient. Models were printed using Ninjaflex thermoplastic polyurethane (TPU) (Ninjatek Manheim, PA) and TPU 95A (Ultimaker, Netherlands) on Ultimaker 3 Extended 3D printer (Ultimaker, Netherlands). The models were implanted at nominal pressure with same sized Sapien balloon-expandable frames (Edwards Lifesciences, CA) as received in-vivo. Ex-vivo implanted TAVR models (eTAVR) were scanned using Siemens SOMATOM flash dual source CT (Siemens, Malvern, PA) and then analyzed with Mimics software (Materialize NV, Leuven, Belgium) to evaluate relative stent appositions. eTAVR were then compared to post-TAVR echocardiograms for each patient to assess for correlations of identified and predicted paravalvular leak (PVL) locations.
A total of 20 patients (70% male) were included in this study. The median age was 77.5 (74-83.5) years. Ten patients were characterized to elicit mild (9/10) or moderate (1/10) PVL, and 10 patients presented no PVL. In patients with echocardiographic PVL, eTAVR 3D model analyses correctly identified the site of PVL in 8/10 cases. In patients without echocardiographic PVL, eTAVR 3D model analyses correctly predicted the lack of PVL in 9/10 cases.
3D printing may help predict the potential locations of associated PVL post-TAVR, which may have implications for optimizing valve selection and sizing.
在经导管主动脉瓣置换术(TAVR)前,没有有效的方法来预测瓣周漏。
我们回顾性分析了 20 例因严重钙化性主动脉瓣狭窄而行 TAVR 的患者的术前 CT 扫描,并为每位患者打印了 3 维(3D)主动脉根部模型。模型使用 NinjaFlex 热塑性聚氨酯(TPU)(Ninjatek Manheim,PA)和 TPU 95A(Ultimaker,荷兰)在 Ultimaker 3 扩展 3D 打印机(Ultimaker,荷兰)上打印。在标称压力下,使用与体内实际植入相同尺寸的 Sapien 球囊扩张支架(爱德华兹生命科学公司,CA)植入模型。将离体植入的 TAVR 模型(eTAVR)用西门子 SOMATOM flash 双源 CT(西门子,马伦,PA)进行扫描,然后使用 Mimics 软件(Materialize NV,鲁汶,比利时)进行分析,以评估支架的相对贴合度。然后将 eTAVR 与每位患者的 TAVR 后超声心动图进行比较,以评估识别和预测的瓣周漏(PVL)位置的相关性。
本研究共纳入 20 例患者(70%为男性),中位年龄为 77.5(74-83.5)岁。10 例患者表现为轻度(9/10)或中度(1/10)PVL,10 例患者无 PVL。在有超声心动图 PVL 的患者中,eTAVR 3D 模型分析正确识别了 8/10 例患者的 PVL 部位。在无超声心动图 PVL 的患者中,eTAVR 3D 模型分析正确预测了 9/10 例患者无 PVL。
3D 打印技术可能有助于预测 TAVR 后瓣周漏的潜在位置,这可能对优化瓣膜选择和尺寸具有重要意义。