Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar;
University of Queensland, Centre for Sensorimotor Neuroscience, School of Human Movement Studies, Brisbane, Australia.
J Appl Physiol (1985). 2017 Oct 1;123(4):816-824. doi: 10.1152/japplphysiol.00430.2017. Epub 2017 Jul 6.
This study aimed to clarify the pathway mediating hyperthermia-induced alterations in neural drive transmission and determine if heat acclimation protects voluntary muscle activation and cognitive function in hyperthermic humans. Electrically evoked potentials (H reflex and M wave), executive function (special planning and working memory), and maximal voluntary isometric contractions (120 s) were assessed in 14 participants in control conditions [CON, 24°C, 40% relative humidity (RH)] and in a hyperthermic state (HYP, 44-50°C, 50% RH) on consecutive days in a counterbalanced order. Thereafter, participants were passively heat acclimated for 11 days (1 h per day, 48-50°C, 50% RH) before repeating the initial assessments. Heat acclimation decreased rectal temperature in CON (-0.2°C, < 0.05), but participants were maintained at ~39°C in HYP. Heat acclimation increased the time required to reach 39°C (+9 min), along with sweat rate (+0.7 l/h), and serum extracellular expression of heat shock protein 72 (eHSP72; +20%) in HYP ( < 0.05). M-wave and H-reflex amplitudes were lower in HYP than CON ( < 0.05) and were not protected by heat acclimation. Nerve conduction velocity was faster in HYP than CON ( < 0.05) without being influenced by heat acclimation. These results suggest that peripheral neural drive transmission in the hyperthermic state is primarily affected by axonal conduction velocity rather than synaptic failure. Executive function, voluntary activation, and the ability to sustain torque were impaired in HYP ( < 0.05). However, despite no perceptual changes ( > 0.05), heat acclimation restored executive function, while protecting the ability to sustain voluntary activation and torque production during a prolonged contraction in hyperthermia ( < 0.05). Ultimately, heat acclimation induces beneficial central but not peripheral neural adaptations. Heat acclimation restores planning accuracy and working memory in hyperthermic humans, together with the supraspinal capacity to sustain motor drive during a sustained maximal voluntary contraction. Electrically evoked potential data (M wave, H reflex) indicate that heat acclimation does not protect against hyperthermia-induced impairments in peripheral neural drive transmission. Heat acclimation induces beneficial central but not peripheral neural adaptations.
本研究旨在阐明介导高热诱导的神经驱动传递改变的途径,并确定热适应是否能保护高热环境下人体的自愿肌肉激活和认知功能。在连续的日子里,以平衡的方式,14 名参与者在对照条件[CON,24°C,40%相对湿度(RH)]和高热状态(HYP,44-50°C,50%RH)下评估了电诱发电位(H 反射和 M 波)、执行功能(特殊计划和工作记忆)和最大等长收缩(120 秒)。此后,参与者接受了 11 天的被动热适应(每天 1 小时,48-50°C,50%RH),然后再重复最初的评估。热适应使 CON 中的直肠温度降低(-0.2°C, < 0.05),但参与者在 HYP 中保持在约 39°C。热适应增加了达到 39°C所需的时间(增加 9 分钟),以及汗率(+0.7 l/h)和血清细胞外热休克蛋白 72(eHSP72;+20%)在 HYP 中的表达( < 0.05)。与 CON 相比,HYP 中的 M 波和 H 反射幅度较低( < 0.05),热适应不能保护它们。与热适应无关,HYP 中的神经传导速度快于 CON( < 0.05)。这些结果表明,在高热状态下,周围神经驱动传递主要受轴突传导速度的影响,而不是突触失败的影响。在 HYP 中,执行功能、自愿激活和维持扭矩的能力受损( < 0.05)。然而,尽管没有感知变化( > 0.05),热适应恢复了执行功能,同时在高热下长时间收缩时保护了自愿激活和扭矩产生的能力( < 0.05)。最终,热适应诱导有益的中枢但不是外周神经适应。热适应恢复了高热环境下人类的计划准确性和工作记忆,以及在持续最大自愿收缩期间维持运动驱动的脊髓上能力。电诱发潜力数据(M 波、H 反射)表明,热适应不能防止高热引起的周围神经驱动传递损伤。热适应诱导有益的中枢但不是外周神经适应。