Suppr超能文献

在准共焦线扫描检眼镜中使用基于尺度不变特征变换(SIFT)算法的配准来提高视网膜图像质量。

Improving Retinal Image Quality Using Registration with an SIFT Algorithm in Quasi-Confocal Line Scanning Ophthalmoscope.

作者信息

He Yi, Wang Yuanyuan, Wei Ling, Li Xiqi, Yang Jinsheng, Zhang Yudong

机构信息

The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu, 610209, China.

Graduate School of Chinese Academy of Sciences, Beijing, 100039, China.

出版信息

Adv Exp Med Biol. 2017;977:183-190. doi: 10.1007/978-3-319-55231-6_25.

Abstract

When high-magnification images are taken with a quasi-confocal line scanning ophthalmoscope (LSO), the quality of images always suffers from Gaussian noise, and the signal to noise ratio (SNR) is very low for a safer laser illumination. In addition, motions of the retina severely affect the stabilization of the real-time video resulting in significant distortions or warped images. We describe a scale-invariant feature transform (SIFT) algorithm to automatically abstract corner points with subpixel resolution and match these points in sequential images using an affine transformation. Once n images are aligned and averaged, the noise level drops by a factor of [Formula: see text] and the image quality is improved. The improvement of image quality is independent of the acquisition method as long as the image is not warped, particularly severely during confocal scanning. Consequently, even better results can be expected by implementing this image processing technique on higher resolution images.

摘要

当使用准共焦线扫描检眼镜(LSO)拍摄高倍放大图像时,图像质量总是受到高斯噪声的影响,并且对于更安全的激光照明,信噪比(SNR)非常低。此外,视网膜的运动严重影响实时视频的稳定性,导致图像出现明显的失真或扭曲。我们描述了一种尺度不变特征变换(SIFT)算法,用于自动提取具有亚像素分辨率的角点,并使用仿射变换在连续图像中匹配这些点。一旦n幅图像对齐并平均,噪声水平会下降[公式:见正文]倍,图像质量得到改善。只要图像没有扭曲,特别是在共焦扫描期间没有严重扭曲,图像质量的提高与采集方法无关。因此,在更高分辨率的图像上实施这种图像处理技术有望获得更好的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验