Suppr超能文献

共焦扫描激光检眼镜的设计优化。

Optimization of confocal scanning laser ophthalmoscope design.

机构信息

Duke University, Department of Biomedical Engineering, Durham, North Carolina 27708, USA.

出版信息

J Biomed Opt. 2013 Jul;18(7):076015. doi: 10.1117/1.JBO.18.7.076015.

Abstract

Confocal scanning laser ophthalmoscopy (cSLO) enables high-resolution and high-contrast imaging of the retina by employing spatial filtering for scattered light rejection. However, to obtain optimized image quality, one must design the cSLO around scanner technology limitations and minimize the effects of ocular aberrations and imaging artifacts. We describe a cSLO design methodology resulting in a simple, relatively inexpensive, and compact lens-based cSLO design optimized to balance resolution and throughput for a 20-deg field of view (FOV) with minimal imaging artifacts. We tested the imaging capabilities of our cSLO design with an experimental setup from which we obtained fast and high signal-to-noise ratio (SNR) retinal images. At lower FOVs, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles even without the use of adaptive optics. Through an experiment comparing our optimized cSLO design to a commercial cSLO system, we show that our design demonstrates a significant improvement in both image quality and resolution.

摘要

共聚焦扫描激光检眼镜(cSLO)通过对散射光进行空间滤波来实现视网膜的高分辨率和高对比度成像。然而,为了获得优化的图像质量,必须根据扫描仪技术的局限性来设计 cSLO,并最小化眼像差和成像伪影的影响。我们描述了一种 cSLO 设计方法,最终设计出一种简单、相对便宜且紧凑的基于透镜的 cSLO,该设计在最小化成像伪影的同时,优化了 20 度视场(FOV)的分辨率和吞吐量之间的平衡。我们使用实验设置测试了我们的 cSLO 设计的成像能力,从中获得了快速和高信噪比(SNR)的视网膜图像。在较低的 FOV 下,即使没有使用自适应光学,我们也能够可视化旁中心锥光感受器和神经纤维束。通过将我们优化的 cSLO 设计与商业 cSLO 系统进行比较的实验,我们表明我们的设计在图像质量和分辨率方面都有显著的提高。

相似文献

1
Optimization of confocal scanning laser ophthalmoscope design.
J Biomed Opt. 2013 Jul;18(7):076015. doi: 10.1117/1.JBO.18.7.076015.
2
Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy.
J Biomed Opt. 2012 Nov;17(11):116005. doi: 10.1117/1.JBO.17.11.116005.
4
MEMS-based adaptive optics scanning laser ophthalmoscopy.
Opt Lett. 2006 May 1;31(9):1268-70. doi: 10.1364/ol.31.001268.
7
Compact adaptive optics line scanning ophthalmoscope.
Opt Express. 2009 Jun 8;17(12):10242-58. doi: 10.1364/oe.17.010242.
9
Dual electro-optical modulator polarimeter based on adaptive optics scanning laser ophthalmoscope.
Opt Express. 2010 Oct 11;18(21):21892-904. doi: 10.1364/OE.18.021892.
10
Optical Design of Adaptive Optics Confocal Scanning Laser Ophthalmoscope with Two Deformable Mirrors.
Adv Exp Med Biol. 2017;977:385-392. doi: 10.1007/978-3-319-55231-6_50.

引用本文的文献

2
imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics.
Biomed Opt Express. 2024 Jul 15;15(8):4675-4688. doi: 10.1364/BOE.533249. eCollection 2024 Aug 1.
3
Spiral scanning improves subject fixation in widefield retinal imaging.
Opt Lett. 2024 May 1;49(9):2489-2492. doi: 10.1364/OL.517088.
5
Principles of microscopy for ophthalmologists.
Eye (Lond). 2025 Mar;39(4):635-643. doi: 10.1038/s41433-024-02970-0. Epub 2024 Feb 19.
6
Hybrid spiral scanning in a double-clad fiber-based handheld confocal scanning light ophthalmoscope.
Biomed Opt Express. 2023 Sep 11;14(10):5162-5181. doi: 10.1364/BOE.500608. eCollection 2023 Oct 1.
7
In-vivo visualization of the photoreceptors using Spectralis High Magnification Module imaging in central serous chorioretinopathy.
Am J Ophthalmol Case Rep. 2021 Dec 31;25:101249. doi: 10.1016/j.ajoc.2021.101249. eCollection 2022 Mar.
8
Computer-assisted photoreceptor assessment on Heidelberg Engineering Spectralis™ High Magnification Module™ images.
Graefes Arch Clin Exp Ophthalmol. 2021 Nov;259(11):3311-3320. doi: 10.1007/s00417-021-05326-6. Epub 2021 Aug 6.
10
High-resolution, ultrafast, wide-field retinal eye-tracking for enhanced quantification of fixational and saccadic motion.
Biomed Opt Express. 2020 May 19;11(6):3164-3180. doi: 10.1364/BOE.392849. eCollection 2020 Jun 1.

本文引用的文献

1
High-speed, image-based eye tracking with a scanning laser ophthalmoscope.
Biomed Opt Express. 2012 Oct 1;3(10):2611-22. doi: 10.1364/BOE.3.002611. Epub 2012 Sep 19.
2
The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope.
Biomed Opt Express. 2012 Oct 1;3(10):2537-49. doi: 10.1364/BOE.3.002537. Epub 2012 Sep 13.
3
Adaptive optics scanning ophthalmoscopy with annular pupils.
Biomed Opt Express. 2012 Jul 1;3(7):1647-61. doi: 10.1364/BOE.3.001647. Epub 2012 Jun 20.
5
Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope.
Biomed Opt Express. 2011 Jul 1;2(7):1864-76. doi: 10.1364/BOE.2.001864. Epub 2011 Jun 8.
7
Reflectometry with a scanning laser ophthalmoscope.
Appl Opt. 1992 Jul 1;31(19):3697-710. doi: 10.1364/AO.31.003697.
9
Confocal scanning laser ophthalmoscope.
Appl Opt. 1987 Apr 15;26(8):1492-9. doi: 10.1364/AO.26.001492.
10
First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes.
Opt Express. 2009 Oct 12;17(21):18906-19. doi: 10.1364/OE.17.018906.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验