Suppr超能文献

基于差分进化的太赫兹时域光谱精确定量分析波长选择方法

Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy.

作者信息

Li Zhi, Chen Weidong, Lian Feiyu, Ge Hongyi, Guan Aihong

机构信息

1 College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China.

2 The Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou, China.

出版信息

Appl Spectrosc. 2017 Dec;71(12):2653-2660. doi: 10.1177/0003702817722367. Epub 2017 Aug 3.

Abstract

Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.

摘要

成分混合物的定量分析是太赫兹时域光谱(THz-TDS)的一项重要应用,并且在最近的研究中引起了广泛关注。尽管使用THz-TDS进行定量分析的准确性受到许多因素的影响,但从样品的太赫兹吸收光谱中选择波长是最关键的部分。原始光谱由来自样品的信号以及散射和其他随机干扰组成,这些会严重影响定量准确性。为了使用THz-TDS进行精确的定量分析,需要保留来自样品的信号,同时消除散射和其他噪声源。本文研究了一种基于差分进化(DE)的新型波长选择方法。通过使用THz-TDS对一系列二元氨基酸混合物进行定量实验,我们证明了基于DE的波长选择方法的有效性,其错误率低于5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验