Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, 08193-Bellaterra (Barcelona), Spain.
Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, 08193-Bellaterra (Barcelona), Spain.
Curr Med Chem. 2019;26(21):3911-3920. doi: 10.2174/0929867324666170705121754.
Protein aggregation into β-sheet-enriched insoluble assemblies is being found to be associated with an increasing number of debilitating human pathologies, such as Alzheimer's disease or type 2 diabetes, but also with premature aging. Furthermore, protein aggregation represents a major bottleneck in the production and marketing of proteinbased therapeutics. Thus, the development of methods to accurately forecast the aggregation propensity of a certain protein is of much value.
METHODS/RESULTS: A myriad of in vitro and in vivo aggregation studies have shown that the aggregation propensity of a certain polypeptide sequence is highly dependent on its intrinsic properties and, in most cases, driven by specific short regions of high aggregation propensity. These observations have fostered the development of a first generation of algorithms aimed to predict protein aggregation propensities from the protein sequence. A second generation of programs able to map protein aggregation on protein structures is emerging. Herein, we review the most representative online accessible predictive tools, emphasizing their main distinctive features and the range of applications.
In this review, we describe representative biocomputational approaches to evaluate the aggregation properties of protein sequences and structures, while illustrating how they can become very useful tools to target protein aggregation in biomedicine and biotechnology.
越来越多的使人衰弱的人类疾病,如阿尔茨海默病或 2 型糖尿病,以及早衰,与蛋白质聚集成富含β-折叠的不溶性聚集体有关。此外,蛋白质聚集是蛋白质类治疗药物生产和销售的主要瓶颈。因此,开发准确预测特定蛋白质聚集倾向的方法具有重要价值。
方法/结果:大量的体外和体内聚集研究表明,特定多肽序列的聚集倾向高度依赖于其固有特性,并且在大多数情况下,由高聚集倾向的特定短区域驱动。这些观察结果促进了第一代旨在从蛋白质序列预测蛋白质聚集倾向的算法的发展。能够在蛋白质结构上绘制蛋白质聚集的第二代程序正在出现。本文综述了最具代表性的在线可访问预测工具,强调了它们的主要特点和应用范围。
在这篇综述中,我们描述了评估蛋白质序列和结构聚集特性的代表性生物计算方法,同时说明了它们如何成为生物医学和生物技术中靶向蛋白质聚集的非常有用的工具。