Suppr超能文献

全转录组范围比较Atoh1和miR-183家族对多能干细胞和多能耳祖细胞的影响。

Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells.

作者信息

Ebeid Michael, Sripal Prashanth, Pecka Jason, Beisel Kirk W, Kwan Kelvin, Soukup Garrett A

机构信息

Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America.

Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America.

出版信息

PLoS One. 2017 Jul 7;12(7):e0180855. doi: 10.1371/journal.pone.0180855. eCollection 2017.

Abstract

Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs) and immortalized multipotent otic progenitor (iMOP) cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.

摘要

全球超过5%的人口患有由多种因素导致的致残性听力损失,这些因素包括衰老、噪音暴露、遗传易感性或耳毒性药物的使用。感音神经性听力损失通常是由内耳感觉毛细胞(HCs)的丧失引起的。HCs丧失后听力恢复的一个障碍是哺乳动物听觉HCs自发再生的能力有限。了解协调HCs发育的分子机制有望促进细胞替代疗法的发展。已知多个事件对于HCs的正常发育至关重要,包括Atoh1转录因子和miR-183家族的表达。我们开发了一系列表达miR-183家族和/或Atoh1的载体,用于转染两种不同的发育细胞模型:多能小鼠胚胎干细胞(mESCs)和代表发育后期阶段的永生化多能耳祖细胞(iMOP)。对转染细胞的转录组分析表明,Atoh1的影响取决于背景,对iMOP细胞具有更多HC特异性效应。miR-183家族与Atoh1联合表达不仅似乎能微调基因表达以利于HC命运,而且也是一些HC特异性基因表达所必需的。总体而言,这项工作为Atoh1和miR-183家族在HCs发育过程中的联合作用提供了新的见解,这可能最终为促进HCs再生或维持的策略提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde7/5501616/e7dd4a7b8e84/pone.0180855.g001.jpg

相似文献

3
4
In Vivo Cochlear Hair Cell Generation and Survival by Coactivation of β-Catenin and Atoh1.
J Neurosci. 2015 Jul 29;35(30):10786-98. doi: 10.1523/JNEUROSCI.0967-15.2015.
5
In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression.
PLoS One. 2014 Feb 20;9(2):e89377. doi: 10.1371/journal.pone.0089377. eCollection 2014.
6
Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function.
Dev Neurobiol. 2017 Jan;77(1):3-13. doi: 10.1002/dneu.22401. Epub 2016 Jun 6.
7
8
C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells.
Stem Cell Reports. 2015 Jan 13;4(1):47-60. doi: 10.1016/j.stemcr.2014.11.001. Epub 2014 Dec 11.
9
Atoh1: landscape for inner ear cell regeneration.
Curr Gene Ther. 2014;14(2):101-11. doi: 10.2174/1566523214666140310143407.

引用本文的文献

1
Learning induces unique transcriptional landscapes in the auditory cortex.
Hear Res. 2023 Oct;438:108878. doi: 10.1016/j.heares.2023.108878. Epub 2023 Aug 26.
2
Learning induces unique transcriptional landscapes in the auditory cortex.
bioRxiv. 2023 Aug 8:2023.04.15.536914. doi: 10.1101/2023.04.15.536914.
3
Repurposing the lineage-determining transcription factor Atoh1 without redistributing its genomic binding sites.
Front Cell Dev Biol. 2022 Nov 7;10:1016367. doi: 10.3389/fcell.2022.1016367. eCollection 2022.
4
MiR-106a facilitates the sensorineural hearing loss induced by oxidative stress by targeting connexin-43.
Bioengineered. 2022 Jun;13(6):14080-14093. doi: 10.1080/21655979.2022.2071021.
5
Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells.
Front Cell Neurosci. 2021 Mar 29;15:660748. doi: 10.3389/fncel.2021.660748. eCollection 2021.
6
Transcription co-factor LBH is necessary for the survival of cochlear hair cells.
J Cell Sci. 2021 Apr 1;134(7). doi: 10.1242/jcs.254458. Epub 2021 Apr 13.
7
Research Progress of Hair Cell Protection Mechanism.
Neural Plast. 2020 Oct 9;2020:8850447. doi: 10.1155/2020/8850447. eCollection 2020.
8
Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family.
Mol Neurobiol. 2020 Jan;57(1):358-371. doi: 10.1007/s12035-019-01717-3. Epub 2019 Jul 29.
9
Intracellular Regulome Variability Along the Organ of Corti: Evidence, Approaches, Challenges, and Perspective.
Front Genet. 2018 May 8;9:156. doi: 10.3389/fgene.2018.00156. eCollection 2018.
10
Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development?
Hear Res. 2017 Jun;349:182-196. doi: 10.1016/j.heares.2016.12.011. Epub 2016 Dec 26.

本文引用的文献

2
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 2015 Aug 12;4:e05005. doi: 10.7554/eLife.05005.
4
Gene Expression by Mouse Inner Ear Hair Cells during Development.
J Neurosci. 2015 Apr 22;35(16):6366-80. doi: 10.1523/JNEUROSCI.5126-14.2015.
6
C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells.
Stem Cell Reports. 2015 Jan 13;4(1):47-60. doi: 10.1016/j.stemcr.2014.11.001. Epub 2014 Dec 11.
7
Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity.
Nature. 2014 Feb 27;506(7489):511-5. doi: 10.1038/nature12903. Epub 2014 Jan 12.
9
MiR-183 family regulates chloride intracellular channel 5 expression in inner ear hair cells.
Toxicol In Vitro. 2013 Feb;27(1):486-91. doi: 10.1016/j.tiv.2012.07.008. Epub 2012 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验