School of Electric Engineering and Automation, Hefei University of Technology, Hefei, Anhui, 230009, China.
Sci Rep. 2017 Jul 7;7(1):4896. doi: 10.1038/s41598-017-05275-3.
A major challenge in clinical cancer research is the identification of accurate molecular subtype. While unsupervised clustering methods have been applied for class discovery, this clustering method remains a bottleneck in developing accurate method for molecular subtype discovery. In this analysis, we hypothesize that spectral clustering method could identify molecular subtypes in correlation with survival outcomes. We propose an accurate subtype identification method, Cancer Subtype Identification with Spectral Clustering using Nyström approximation (CSISCN), for the discovery of molecular subtypes, based on spectral clustering method. CSISCN could be used to improve gene expression-based identification of breast cancer molecular subtypes. We demonstrated that CSISCN identified the molecular subtypes with distinct clinical outcomes and was valid for the number of molecular subtypes. Furthermore, CSISCN identified molecular subtypes for improving clinical and molecular relevance which significantly outperformed consensus clustering and spectral clustering methods. To test the general applicability of the CSISCN, we further applied it on human CRC datasets and AML datasets and demonstrated superior performance as compared to consensus clustering method. In summary, CSISCN demonstrated the great potential in gene expression-based subtype identification.
临床癌症研究中的一个主要挑战是识别准确的分子亚型。虽然无监督聚类方法已被应用于分类发现,但这种聚类方法仍然是开发准确的分子亚型发现方法的瓶颈。在本分析中,我们假设谱聚类方法可以识别与生存结果相关的分子亚型。我们提出了一种基于谱聚类方法的准确亚型识别方法,即使用 Nyström 逼近的癌症亚型识别的谱聚类(CSISCN),用于发现分子亚型。CSISCN 可用于改进基于基因表达的乳腺癌分子亚型识别。我们证明 CSISCN 可以识别具有不同临床结果的分子亚型,并且对于分子亚型的数量是有效的。此外,CSISCN 识别的分子亚型可提高临床和分子相关性,明显优于共识聚类和谱聚类方法。为了测试 CSISCN 的一般适用性,我们进一步将其应用于人类 CRC 数据集和 AML 数据集,并证明其性能优于共识聚类方法。总之,CSISCN 在基于基因表达的亚型识别中具有巨大的潜力。
Nucleic Acids Res. 2017-7-27
Breast Cancer Res. 2016-7-7
Breast Cancer Res Treat. 2017-1
Nat Med. 2015-11
Clin Cancer Res. 2014-12-29
Proc Natl Acad Sci U S A. 2014-2-11
Genome Res. 2013-6-20
N Engl J Med. 2013-5-1
Proc Natl Acad Sci U S A. 2013-4-15