文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 Nyström 逼近的谱聚类用于准确识别癌症分子亚型。

Spectral clustering using Nyström approximation for the accurate identification of cancer molecular subtypes.

机构信息

School of Electric Engineering and Automation, Hefei University of Technology, Hefei, Anhui, 230009, China.

出版信息

Sci Rep. 2017 Jul 7;7(1):4896. doi: 10.1038/s41598-017-05275-3.


DOI:10.1038/s41598-017-05275-3
PMID:28687729
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5501792/
Abstract

A major challenge in clinical cancer research is the identification of accurate molecular subtype. While unsupervised clustering methods have been applied for class discovery, this clustering method remains a bottleneck in developing accurate method for molecular subtype discovery. In this analysis, we hypothesize that spectral clustering method could identify molecular subtypes in correlation with survival outcomes. We propose an accurate subtype identification method, Cancer Subtype Identification with Spectral Clustering using Nyström approximation (CSISCN), for the discovery of molecular subtypes, based on spectral clustering method. CSISCN could be used to improve gene expression-based identification of breast cancer molecular subtypes. We demonstrated that CSISCN identified the molecular subtypes with distinct clinical outcomes and was valid for the number of molecular subtypes. Furthermore, CSISCN identified molecular subtypes for improving clinical and molecular relevance which significantly outperformed consensus clustering and spectral clustering methods. To test the general applicability of the CSISCN, we further applied it on human CRC datasets and AML datasets and demonstrated superior performance as compared to consensus clustering method. In summary, CSISCN demonstrated the great potential in gene expression-based subtype identification.

摘要

临床癌症研究中的一个主要挑战是识别准确的分子亚型。虽然无监督聚类方法已被应用于分类发现,但这种聚类方法仍然是开发准确的分子亚型发现方法的瓶颈。在本分析中,我们假设谱聚类方法可以识别与生存结果相关的分子亚型。我们提出了一种基于谱聚类方法的准确亚型识别方法,即使用 Nyström 逼近的癌症亚型识别的谱聚类(CSISCN),用于发现分子亚型。CSISCN 可用于改进基于基因表达的乳腺癌分子亚型识别。我们证明 CSISCN 可以识别具有不同临床结果的分子亚型,并且对于分子亚型的数量是有效的。此外,CSISCN 识别的分子亚型可提高临床和分子相关性,明显优于共识聚类和谱聚类方法。为了测试 CSISCN 的一般适用性,我们进一步将其应用于人类 CRC 数据集和 AML 数据集,并证明其性能优于共识聚类方法。总之,CSISCN 在基于基因表达的亚型识别中具有巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/3b7381627e63/41598_2017_5275_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/481630efca2f/41598_2017_5275_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/3d76ec86fabf/41598_2017_5275_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/e36d839e4c1d/41598_2017_5275_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/c5650980edc1/41598_2017_5275_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/819447e56a08/41598_2017_5275_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/79a2094542e3/41598_2017_5275_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/3b7381627e63/41598_2017_5275_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/481630efca2f/41598_2017_5275_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/3d76ec86fabf/41598_2017_5275_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/e36d839e4c1d/41598_2017_5275_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/c5650980edc1/41598_2017_5275_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/819447e56a08/41598_2017_5275_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/79a2094542e3/41598_2017_5275_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e1/5501792/3b7381627e63/41598_2017_5275_Fig7_HTML.jpg

相似文献

[1]
Spectral clustering using Nyström approximation for the accurate identification of cancer molecular subtypes.

Sci Rep. 2017-7-7

[2]
MiSTIC, an integrated platform for the analysis of heterogeneity in large tumour transcriptome datasets.

Nucleic Acids Res. 2017-7-27

[3]
Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups.

Breast Cancer Res. 2016-7-7

[4]
Stratification of Breast Cancer by Integrating Gene Expression Data and Clinical Variables.

Molecules. 2019-2-11

[5]
The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set.

PLoS One. 2015-7-1

[6]
Co-expression modules identified from published immune signatures reveal five distinct immune subtypes in breast cancer.

Breast Cancer Res Treat. 2017-1

[7]
Unsupervised Clustering of Quantitative Image Phenotypes Reveals Breast Cancer Subtypes with Distinct Prognoses and Molecular Pathways.

Clin Cancer Res. 2017-1-10

[8]
Prognosis of stage III colorectal carcinomas with FOLFOX adjuvant chemotherapy can be predicted by molecular subtype.

Oncotarget. 2017-6-13

[9]
Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.

BMC Med Genomics. 2017-12-21

[10]
Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms.

BMC Genomics. 2006-5-26

引用本文的文献

[1]
Unsupervised machine learning identifies opioid taper reversal patterns in a longitudinal cohort (2008-2018).

PLOS Digit Health. 2025-4-7

[2]
Approximate spectral clustering using both reference vectors and topology of the network generated by growing neural gas.

PeerJ Comput Sci. 2021-8-20

本文引用的文献

[1]
The consensus molecular subtypes of colorectal cancer.

Nat Med. 2015-11

[2]
A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients.

Clin Cancer Res. 2014-12-29

[3]
Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology.

Proc Natl Acad Sci U S A. 2014-2-11

[4]
Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma.

Genome Res. 2013-6-20

[5]
Mutational heterogeneity in cancer and the search for new cancer-associated genes.

Nature. 2013-6-16

[6]
Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value.

PLoS Med. 2013-5-21

[7]
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.

N Engl J Med. 2013-5-1

[8]
Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer.

Proc Natl Acad Sci U S A. 2013-4-15

[9]
Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors.

Nat Genet. 2013-1-13

[10]
Comprehensive molecular characterization of human colon and rectal cancer.

Nature. 2012-7-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索