Irons Jessica L, Gradden Tamara, Zhang Angel, He Xuming, Barnes Nick, Scott Adele F, McKone Elinor
Research School of Psychology, Australian National University, Australia; ARC Centre for Cognition and Its Disorders, Australian National University, Australia.
Research School of Psychology, Australian National University, Australia.
Vision Res. 2017 Aug;137:61-79. doi: 10.1016/j.visres.2017.06.002. Epub 2017 Jul 15.
The visual prosthesis (or "bionic eye") has become a reality but provides a low resolution view of the world. Simulating prosthetic vision in normal-vision observers, previous studies report good face recognition ability using tasks that allow recognition to be achieved on the basis of information that survives low resolution well, including basic category (sex, age) and extra-face information (hairstyle, glasses). Here, we test within-category individuation for face-only information (e.g., distinguishing between multiple Caucasian young men with hair covered). Under these conditions, recognition was poor (although above chance) even for a simulated 40×40 array with all phosphene elements assumed functional, a resolution above the upper end of current-generation prosthetic implants. This indicates that a significant challenge is to develop methods to improve face identity recognition. Inspired by "bionic ear" improvements achieved by altering signal input to match high-level perceptual (speech) requirements, we test a high-level perceptual enhancement of face images, namely face caricaturing (exaggerating identity information away from an average face). Results show caricaturing improved identity recognition in memory and/or perception (degree by which two faces look dissimilar) down to a resolution of 32×32 with 30% phosphene dropout. Findings imply caricaturing may offer benefits for patients at resolutions realistic for some current-generation or in-development implants.
视觉假体(或“仿生眼”)已成为现实,但提供的是低分辨率的世界视图。在正常视力观察者中模拟假体视觉,先前的研究报告称,使用允许基于在低分辨率下仍能很好保留的信息来实现识别的任务时,具有良好的面部识别能力,这些信息包括基本类别(性别、年龄)和面部外信息(发型、眼镜)。在这里,我们测试仅针对面部信息的类别内个体化(例如,区分多个头发被遮住的白人青年男性)。在这些条件下,即使对于假设所有光感受器元件都起作用的模拟40×40阵列(该分辨率高于当前一代假体植入物的上限),识别效果也很差(尽管高于随机水平)。这表明,一个重大挑战是开发提高面部身份识别的方法。受通过改变信号输入以匹配高级感知(语音)要求而实现的“仿生耳”改进的启发,我们测试了面部图像的高级感知增强,即面部漫画化(将身份信息从平均脸夸张化)。结果表明,漫画化在记忆和/或感知(两张脸看起来不同的程度)方面提高了身份识别,分辨率低至32×32且有30%的光感受器缺失。研究结果表明,对于一些当前一代或正在研发的植入物的现实分辨率而言,漫画化可能对患者有益。