Suppr超能文献

高氧暴露新生大鼠肺组织DNA甲基化的全基因组分析

Genome-Wide Analysis of DNA Methylation in Hyperoxia-Exposed Newborn Rat Lung.

作者信息

Chen Chung-Ming, Liu Yi-Chun, Chen Yue-Jun, Chou Hsiu-Chu

机构信息

Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.

Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

出版信息

Lung. 2017 Oct;195(5):661-669. doi: 10.1007/s00408-017-0036-z. Epub 2017 Jul 8.

Abstract

PURPOSE

Oxygen therapy is often required to treat newborn infants with respiratory disorders. Prolonged exposure of neonatal rats to hyperoxia reduced alveolar septation, increased terminal air space size, and increased lung fibrosis; these conditions are very similar to those of human bronchopulmonary dysplasia. Epigenetic regulation of gene expression plays a crucial role in bronchopulmonary dysplasia development.

METHOD

We reared Sprague-Dawley rat pups in either room air (RA, n = 24) or an atmosphere containing 85% O (n = 26) from Postnatal Days 1 to 14. Methylated DNA immunoprecipitation (MeDIP) was used to analyze genome-wide DNA methylation in lung tissues of neonatal rats. Hyperoxia-exposed rats exhibited larger air spaces and thinner septa than RA-exposed rats did on Postnatal Day 14. The rats exposed to hyperoxia exhibited significantly higher mean linear intercepts than did the rats exposed to RA. We applied MeDIP next-generation sequencing for profiling changes in DNA methylation in the rat lungs exposed to hyperoxia and RA. We performed bioinformatics and pathway analyses on the raw sequencing data to identify differentially methylated candidate genes.

RESULTS

Our in vivo model revealed that neonatal hyperoxia exposure arrested alveolarization on Postnatal Day 14. We found that the ErbB, actin cytoskeleton, and focal adhesion signaling pathways are epigenetically modulated by exposure to hyperoxia. We demonstrated that hyperoxia exposure contribute in delaying lung development through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in alveolarization.

CONCLUSIONS

These data indicate that aberrant DNA methylation and deregulation of the actin cytoskeleton and focal adhesion pathways of lung tissues may be involved in the pathophysiology of hyperoxia-induced arrested alveolarization.

摘要

目的

治疗患有呼吸系统疾病的新生儿通常需要进行氧疗。新生大鼠长时间暴露于高氧环境会减少肺泡间隔形成,增加终末气腔大小,并增加肺纤维化;这些情况与人类支气管肺发育不良非常相似。基因表达的表观遗传调控在支气管肺发育不良的发展中起关键作用。

方法

我们从出生后第1天到第14天将斯普拉格-道利大鼠幼崽饲养在室内空气(RA,n = 24)或含85%氧气的环境(n = 26)中。使用甲基化DNA免疫沉淀法(MeDIP)分析新生大鼠肺组织中的全基因组DNA甲基化。在出生后第14天,暴露于高氧环境的大鼠比暴露于室内空气的大鼠表现出更大的气腔和更薄的间隔。暴露于高氧环境的大鼠的平均线性截距显著高于暴露于室内空气的大鼠。我们应用MeDIP下一代测序技术分析暴露于高氧和室内空气的大鼠肺中DNA甲基化的变化。我们对原始测序数据进行生物信息学和通路分析,以鉴定差异甲基化的候选基因。

结果

我们的体内模型显示,新生大鼠暴露于高氧环境会在出生后第14天阻止肺泡化。我们发现,ErbB、肌动蛋白细胞骨架和粘着斑信号通路会因暴露于高氧环境而发生表观遗传调控。我们证明,高氧暴露通过破坏肺中可能参与肺泡化的基因的表达,通过表观遗传机制导致肺发育延迟。

结论

这些数据表明,肺组织中异常的DNA甲基化以及肌动蛋白细胞骨架和粘着斑通路的失调可能参与了高氧诱导的肺泡化停滞的病理生理学过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验