School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA.
LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ, 85287, USA.
Adv Mater. 2017 Sep;29(34). doi: 10.1002/adma.201701201. Epub 2017 Jul 10.
Chemical vapor deposition and growth dynamics of highly anisotropic 2D lateral heterojunctions between pseudo-1D ReS and isotropic WS monolayers are reported for the first time. Constituent ReS and WS layers have vastly different atomic structure, crystallizing in anisotropic 1T' and isotropic 2H phases, respectively. Through high-resolution scanning transmission electron microscopy, electron energy loss spectroscopy, and angle-resolved Raman spectroscopy, this study is able to provide the very first atomic look at intimate interfaces between these dissimilar 2D materials. Surprisingly, the results reveal that ReS lateral heterojunctions to WS produce well-oriented (highly anisotropic) Re-chains perpendicular to WS edges. When vertically stacked, Re-chains orient themselves along the WS zigzag direction, and consequently, Re-chains exhibit six-fold rotation, resulting in loss of macroscopic scale anisotropy. The degree of anisotropy of ReS on WS largely depends on the domain size, and decreases for increasing domain size due to randomization of Re-chains and formation of ReS subdomains. Present work establishes the growth dynamics of atomic junctions between novel anisotropic/isotropic 2D materials, and overall results mark the very first demonstration of control over anisotropy direction, which is a significant leap forward for large-scale nanomanufacturing of anisotropic systems.
首次报道了高度各向异性的二维(2D)横向异质结在伪一维(1D)ReS 和各向同性 WS 单层之间的化学气相沉积和生长动力学。组成 ReS 和 WS 层的原子结构有很大差异,分别结晶为各向异性的 1T'相和各向同性的 2H 相。通过高分辨率扫描透射电子显微镜、电子能量损失谱和角度分辨拉曼光谱,本研究首次能够提供这些不同二维材料之间紧密界面的原子观察。令人惊讶的是,结果表明,ReS 横向异质结与 WS 产生了垂直于 WS 边缘的取向良好(高度各向异性)的 Re 链。当垂直堆叠时,Re 链沿 WS 锯齿方向取向,因此,Re 链表现出六重旋转,导致宏观尺度各向异性丧失。ReS 在 WS 上的各向异性程度在很大程度上取决于畴尺寸,畴尺寸增加会导致 Re 链的随机化和 ReS 亚畴的形成,从而导致各向异性程度降低。本工作建立了新颖各向异性/各向同性 2D 材料之间原子结的生长动力学,总体结果首次证明了对各向异性方向的控制,这是各向异性系统大规模纳米制造的重要突破。