Minor Bryan, Cook Diane J
Washington State University, Pullman, WA 99203, USA.
Washington State University, Pullman, WA 99203 USA.
Pervasive Mob Comput. 2017 Jul;38(Pt 1):77-91. doi: 10.1016/j.pmcj.2016.09.010. Epub 2016 Sep 27.
While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.
虽然活动识别已被证明对普适计算应用很有价值,但较少有工作专注于预测活动未来发生的技术。我们提出一种活动预测方法,以预测直到目标活动发生所经过的时间。该方法使用回归树分类器生成活动预测,并且相对于序列预测方法具有优势,因为它可以预测直到活动发生的预期时间。我们在真实世界的智能家居数据集上评估该算法,并提供证据表明我们提出的方法在预测活动时间方面最为有效。