Suppr超能文献

epiACO——一种基于蚁群优化算法识别上位性的方法。

epiACO - a method for identifying epistasis based on ant Colony optimization algorithm.

作者信息

Sun Yingxia, Shang Junliang, Liu Jin-Xing, Li Shengjun, Zheng Chun-Hou

机构信息

School of Information Science and Engineering, Qufu Normal University, Rizhao, 276826 China.

Institute of Network Computing, Qufu Normal University, Rizhao, 276826 China.

出版信息

BioData Min. 2017 Jul 6;10:23. doi: 10.1186/s13040-017-0143-7. eCollection 2017.

Abstract

BACKGROUND

Identifying epistasis or epistatic interactions, which refer to nonlinear interaction effects of single nucleotide polymorphisms (SNPs), is essential to understand disease susceptibility and to detect genetic architectures underlying complex diseases. Though many works have been done for identifying epistatic interactions, due to their methodological and computational challenges, the algorithmic development is still ongoing.

RESULTS

In this study, a method epiACO is proposed to identify epistatic interactions, which based on ant colony optimization algorithm. Highlights of epiACO are the introduced fitness function , path selection strategies, and a memory based strategy. The leverages the advantages of both mutual information and Bayesian network to effectively and efficiently measure associations between SNP combinations and the phenotype. Two path selection strategies, i.e., probabilistic path selection strategy and stochastic path selection strategy, are provided to adaptively guide ant behaviors of exploration and exploitation. The memory based strategy is designed to retain candidate solutions found in the previous iterations, and compare them to solutions of the current iteration to generate new candidate solutions, yielding a more accurate way for identifying epistasis.

CONCLUSIONS

Experiments of epiACO and its comparison with other recent methods epiMODE, TEAM, BOOST, SNPRuler, AntEpiSeeker, AntMiner, MACOED, and IACO are performed on both simulation data sets and a real data set of age-related macular degeneration. Results show that epiACO is promising in identifying epistasis and might be an alternative to existing methods.

摘要

背景

识别上位性或上位性相互作用,即单核苷酸多态性(SNP)的非线性相互作用效应,对于理解疾病易感性和检测复杂疾病背后的遗传结构至关重要。尽管已经开展了许多识别上位性相互作用的工作,但由于方法和计算上的挑战,算法开发仍在进行中。

结果

在本研究中,提出了一种基于蚁群优化算法的识别上位性相互作用的方法epiACO。epiACO的亮点在于引入的适应度函数、路径选择策略和基于记忆的策略。该方法利用互信息和贝叶斯网络的优势,有效且高效地测量SNP组合与表型之间的关联。提供了两种路径选择策略,即概率路径选择策略和随机路径选择策略,以自适应地指导蚂蚁的探索和利用行为。基于记忆的策略旨在保留前几次迭代中找到的候选解,并将它们与当前迭代的解进行比较以生成新的候选解,从而产生一种更准确的识别上位性的方法。

结论

在模拟数据集和年龄相关性黄斑变性的真实数据集上对epiACO及其与其他最近的方法epiMODE、TEAM、BOOST、SNPRuler、AntEpiSeeker、AntMiner、MACOED和IACO进行了实验。结果表明,epiACO在识别上位性方面很有前景,可能是现有方法的一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6ba/5500974/941f2177afcc/13040_2017_143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验