Suppr超能文献

检测上位性的新方法的性能分析。

Performance analysis of novel methods for detecting epistasis.

机构信息

School of Computer Science & Technology, Xidian University, Xi'an 710071, China.

出版信息

BMC Bioinformatics. 2011 Dec 15;12:475. doi: 10.1186/1471-2105-12-475.

Abstract

BACKGROUND

Epistasis is recognized fundamentally important for understanding the mechanism of disease-causing genetic variation. Though many novel methods for detecting epistasis have been proposed, few studies focus on their comparison. Undertaking a comprehensive comparison study is an urgent task and a pathway of the methods to real applications.

RESULTS

This paper aims at a comparison study of epistasis detection methods through applying related software packages on datasets. For this purpose, we categorize methods according to their search strategies, and select five representative methods (TEAM, BOOST, SNPRuler, AntEpiSeeker and epiMODE) originating from different underlying techniques for comparison. The methods are tested on simulated datasets with different size, various epistasis models, and with/without noise. The types of noise include missing data, genotyping error and phenocopy. Performance is evaluated by detection power (three forms are introduced), robustness, sensitivity and computational complexity.

CONCLUSIONS

None of selected methods is perfect in all scenarios and each has its own merits and limitations. In terms of detection power, AntEpiSeeker performs best on detecting epistasis displaying marginal effects (eME) and BOOST performs best on identifying epistasis displaying no marginal effects (eNME). In terms of robustness, AntEpiSeeker is robust to all types of noise on eME models, BOOST is robust to genotyping error and phenocopy on eNME models, and SNPRuler is robust to phenocopy on eME models and missing data on eNME models. In terms of sensitivity, AntEpiSeeker is the winner on eME models and both SNPRuler and BOOST perform well on eNME models. In terms of computational complexity, BOOST is the fastest among the methods. In terms of overall performance, AntEpiSeeker and BOOST are recommended as the efficient and effective methods. This comparison study may provide guidelines for applying the methods and further clues for epistasis detection.

摘要

背景

上位性对于理解致病遗传变异的机制具有根本重要性。尽管已经提出了许多用于检测上位性的新方法,但很少有研究关注它们的比较。开展全面的比较研究是当务之急,也是方法走向实际应用的途径。

结果

本文旨在通过应用相关软件包对数据集进行比较研究,来检测上位性的方法。为此,我们根据搜索策略对方法进行分类,并选择了五种具有代表性的方法(TEAM、BOOST、SNPRuler、AntEpiSeeker 和 epiMODE),它们源自不同的基础技术。这些方法在不同大小的模拟数据集、各种上位性模型以及有/无噪声的情况下进行了测试。噪声类型包括缺失数据、基因分型错误和表型复制。通过检测能力(引入了三种形式)、稳健性、敏感性和计算复杂度来评估性能。

结论

在所研究的场景中,没有一种方法是完美的,每种方法都有其优点和局限性。在检测能力方面,AntEpiSeeker 在检测具有边际效应的上位性(eME)方面表现最佳,而 BOOST 在识别无边际效应的上位性(eNME)方面表现最佳。在稳健性方面,AntEpiSeeker 在 eME 模型中对所有类型的噪声都具有稳健性,BOOST 在 eNME 模型中对基因分型错误和表型复制具有稳健性,而 SNPRuler 在 eME 模型中对表型复制和 eNME 模型中的缺失数据具有稳健性。在敏感性方面,AntEpiSeeker 在 eME 模型中表现最佳,而 SNPRuler 和 BOOST 在 eNME 模型中表现良好。在计算复杂度方面,BOOST 是所有方法中最快的。在整体性能方面,推荐使用 AntEpiSeeker 和 BOOST 作为高效、有效的方法。这项比较研究可为应用这些方法提供指导,并为上位性检测提供进一步的线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/704f/3259123/ce9761c9fe9f/1471-2105-12-475-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验