Xu Jianquan, Ma Hongqiang, Liu Yang
Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
Curr Protoc Cytom. 2017 Jul 5;81:12.46.1-12.46.27. doi: 10.1002/cpcy.23.
Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc.
超分辨率(SR)荧光显微镜是一类空间分辨率低于衍射极限的光学显微镜技术,它彻底改变了我们研究生物学的方式,这一点在2014年的诺贝尔化学奖中得到了认可。随机光学重建显微镜(STORM)是一种广泛使用的SR技术,基于单分子定位原理。STORM通常能实现20至30纳米的空间分辨率,与传统光学显微镜相比提高了十倍。在所有SR技术中,STORM通过简单的光学仪器和标准有机荧光染料提供高空间分辨率,但由于样品制备不当或成像条件不佳,它也容易出现图像伪影和图像分辨率下降的问题。它需要对样品制备、图像采集和图像重建这三个方面进行仔细优化,以确保获得高质量的STORM图像,本单元将对此进行广泛讨论。© 2017约翰威立国际出版公司。