Suppr超能文献

一步电沉积法垂直排列碲化镉纳米棒阵列,用于提高三维纳米结构太阳能电池的能量转换效率。

Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

机构信息

State Key Laboratory of Superhard Materials, Jilin University, Qianjin Street 2699, Changchun 130012, People's Republic of China.

Department of Physics and Chemistry, Heihe University, Heihe 164300, People's Republic of China.

出版信息

J Colloid Interface Sci. 2017 Nov 1;505:1047-1054. doi: 10.1016/j.jcis.2017.07.005. Epub 2017 Jul 3.

Abstract

Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices.

摘要

垂直排列的 CdTe 纳米棒(NRs)阵列通过简单的一步无模板电沉积方法成功生长,然后嵌入 CdS 窗口层中,在柔性衬底上形成新颖的三维(3D)异质结。改变电沉积参数,如沉积电位和溶液的 pH 值,以分析它们在高质量 CdTe NRs 阵列形成中的重要作用。详细研究了基于 3D 异质结结构的太阳能电池的光伏转换效率。与标准的平面异质结太阳能电池相比,3D 异质结太阳能电池表现出更好的光伏性能,这归因于其增强的光学吸收能力、增加的异质结面积和改善的载流子输运。3D 异质结太阳能电池具有更好的光电性能,在薄膜太阳能电池中有很大的应用潜力,而简单的电沉积工艺代表了一种很有前途的技术,可以用于大规模制造其他纳米结构的太阳能转换器件。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验