University of Notre Dame, Department of Biological Sciences, Environmental Change Initiative, Notre Dame, Indiana, USA.
University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, Indiana, USA.
Sci Rep. 2017 Jul 11;7(1):5065. doi: 10.1038/s41598-017-05223-1.
Advances in detection of genetic material from species in aquatic ecosystems, including environmental DNA (eDNA), have improved species monitoring and management. eDNA from target species can readily move in streams and rivers and the goal is to measure it, and with that infer where and how abundant species are, adding great value to delimiting species invasions, monitoring and protecting rare species, and estimating biodiversity. To date, we lack an integrated framework that identifies environmental factors that control eDNA movement in realistic, complex, and heterogeneous flowing waters. To this end, using an empirical approach and a simple conceptual model, we propose a framework of how eDNA is transported, retained, and resuspended in stream systems. Such an understanding of eDNA dispersal in streams will be essential for designing optimized sampling protocols and subsequently estimating biomass or organismal abundance. We also discuss guiding principles for more effective use of eDNA methods, highlighting the necessity of understanding these parameters for use in future predictive modeling of eDNA transport.
在水生生态系统中,包括环境 DNA(eDNA)在内的遗传物质检测技术的进步,改善了物种监测和管理。目标物种的 eDNA 可以很容易地在溪流和河流中移动,目标是测量它,并通过这种方式推断出物种的丰富程度和分布位置,从而极大地促进了物种入侵的划定、稀有物种的监测和保护,以及生物多样性的估计。迄今为止,我们缺乏一个综合的框架,无法确定控制复杂和异质流动水中 eDNA 运动的环境因素。为此,我们使用经验方法和简单的概念模型,提出了一个 eDNA 在溪流系统中迁移、保留和再悬浮的框架。对溪流中 eDNA 扩散的这种理解,对于设计优化的采样方案和随后估计生物量或生物个体丰度至关重要。我们还讨论了更有效地使用 eDNA 方法的指导原则,强调了为了在未来进行 eDNA 迁移的预测建模,有必要理解这些参数。