Suppr超能文献

睡眠调节的神经基础——从动物到模型的数据同化

The Neural Basis for Sleep Regulation - Data Assimilation from Animal to Model.

作者信息

Bahari Fatemeh, Tulyaganova Camila, Billard Myles, Alloway Kevin, Gluckman Bruce J

机构信息

Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802.

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802.

出版信息

Conf Rec Asilomar Conf Signals Syst Comput. 2016 Nov;2016:1061-1065. doi: 10.1109/ACSSC.2016.7869532. Epub 2017 Mar 6.

Abstract

Sleep is important for normal brain function, and sleep disruption is comorbid with many neurological diseases. There is a growing mechanistic understanding of the neurological basis for sleep regulation that is beginning to lead to mechanistic mathematically described models. It is our objective to validate the predictive capacity of such models using data assimilation (DA) methods. If such methods are successful, and the models accurately describe enough of the mechanistic functions of the physical system, then they can be used as sophisticated observation systems to reveal both system changes and sources of dysfunction with neurological diseases and identify routes to intervene. Here we report on extensions to our initial efforts [1] at applying unscented Kalman Filter (UKF) to models of sleep regulation on three fronts: tools for multi-parameter fitting; a sophisticated observation model to apply the UKF for observations of behavioral state; and comparison with data recorded from brainstem cell groups thought to regulate sleep.

摘要

睡眠对于正常的大脑功能很重要,而睡眠中断与许多神经疾病共存。人们对睡眠调节的神经学基础的机制理解不断加深,这开始催生以数学方式描述机制的模型。我们的目标是使用数据同化(DA)方法验证此类模型的预测能力。如果这些方法成功,并且模型能够准确描述物理系统的足够多的机制功能,那么它们就可以用作精密的观测系统,以揭示神经疾病中的系统变化和功能障碍来源,并确定干预途径。在此,我们报告在将无迹卡尔曼滤波器(UKF)应用于睡眠调节模型的初步工作[1]基础上,在三个方面的扩展:多参数拟合工具;用于将UKF应用于行为状态观测的精密观测模型;以及与被认为调节睡眠的脑干细胞群记录的数据进行比较。

相似文献

1
The Neural Basis for Sleep Regulation - Data Assimilation from Animal to Model.
Conf Rec Asilomar Conf Signals Syst Comput. 2016 Nov;2016:1061-1065. doi: 10.1109/ACSSC.2016.7869532. Epub 2017 Mar 6.
2
Reconstructing mammalian sleep dynamics with data assimilation.
PLoS Comput Biol. 2012;8(11):e1002788. doi: 10.1371/journal.pcbi.1002788. Epub 2012 Nov 29.
3
Optimization of an unscented Kalman filter for an embedded platform.
Comput Biol Med. 2022 Jul;146:105557. doi: 10.1016/j.compbiomed.2022.105557. Epub 2022 May 7.
5
Adaptive unscented Kalman filter for neuronal state and parameter estimation.
J Comput Neurosci. 2023 May;51(2):223-237. doi: 10.1007/s10827-023-00845-z. Epub 2023 Mar 1.
7
Parameter estimation and control for a neural mass model based on the unscented Kalman filter.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042905. doi: 10.1103/PhysRevE.88.042905. Epub 2013 Oct 10.
8
Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter.
ISA Trans. 2018 Mar;74:134-143. doi: 10.1016/j.isatra.2018.02.005. Epub 2018 Feb 16.
9
Neural mass model-based tracking of anesthetic brain states.
Neuroimage. 2016 Jun;133:438-456. doi: 10.1016/j.neuroimage.2016.03.039. Epub 2016 Mar 24.
10
An improved epidemiological-unscented Kalman filter (hybrid SEIHCRDV-UKF) model for the prediction of COVID-19. Application on real-time data.
Chaos Solitons Fractals. 2023 Jan;166:112914. doi: 10.1016/j.chaos.2022.112914. Epub 2022 Nov 21.

引用本文的文献

1
Optimization of an unscented Kalman filter for an embedded platform.
Comput Biol Med. 2022 Jul;146:105557. doi: 10.1016/j.compbiomed.2022.105557. Epub 2022 May 7.
2
Using Data Assimilation for Quantitative Electroencephalography Analysis.
Brain Sci. 2020 Nov 12;10(11):853. doi: 10.3390/brainsci10110853.

本文引用的文献

1
Three dimensions of the amyloid hypothesis: time, space and 'wingmen'.
Nat Neurosci. 2015 Jun;18(6):800-6. doi: 10.1038/nn.4018.
2
Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease.
Exp Mol Med. 2015 Mar 13;47(3):e148. doi: 10.1038/emm.2014.121.
3
Reconstructing mammalian sleep dynamics with data assimilation.
PLoS Comput Biol. 2012;8(11):e1002788. doi: 10.1371/journal.pcbi.1002788. Epub 2012 Nov 29.
4
The role of sleep problems and circadian clock genes in childhood psychiatric disorders.
J Neural Transm (Vienna). 2012 Oct;119(10):1097-104. doi: 10.1007/s00702-012-0834-7. Epub 2012 Jun 6.
5
Evaluating the links between schizophrenia and sleep and circadian rhythm disruption.
J Neural Transm (Vienna). 2012 Oct;119(10):1061-75. doi: 10.1007/s00702-012-0817-8. Epub 2012 May 10.
6
Basic mechanisms of sleep and epilepsy.
J Clin Neurophysiol. 2011 Apr;28(2):103-10. doi: 10.1097/WNP.0b013e3182120d41.
7
Sleep and epilepsy: common bedfellows.
J Clin Neurophysiol. 2011 Apr;28(2):101-2. doi: 10.1097/WNP.0b013e3182120d30.
8
Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease.
Nat Rev Neurosci. 2010 Aug;11(8):589-99. doi: 10.1038/nrn2868. Epub 2010 Jul 14.
9
Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network.
J Neurophysiol. 2010 Apr;103(4):1937-53. doi: 10.1152/jn.00795.2009. Epub 2010 Jan 27.
10
A mathematical model of the sleep/wake cycle.
J Math Biol. 2010 May;60(5):615-44. doi: 10.1007/s00285-009-0276-5. Epub 2009 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验