Suppr超能文献

用于神经元状态和参数估计的自适应无迹卡尔曼滤波器

Adaptive unscented Kalman filter for neuronal state and parameter estimation.

作者信息

Azzalini Loïc J, Crompton David, D'Eleuterio Gabriele M T, Skinner Frances, Lankarany Milad

机构信息

Institute for Aerospace Studies, University of Toronto, Toronto, Ontario, Canada.

Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.

出版信息

J Comput Neurosci. 2023 May;51(2):223-237. doi: 10.1007/s10827-023-00845-z. Epub 2023 Mar 1.

Abstract

Data assimilation techniques for state and parameter estimation are frequently applied in the context of computational neuroscience. In this work, we show how an adaptive variant of the unscented Kalman filter (UKF) performs on the tracking of a conductance-based neuron model. Unlike standard recursive filter implementations, the robust adaptive unscented Kalman filter (RAUKF) jointly estimates the states and parameters of the neuronal model while adjusting noise covariance matrices online based on innovation and residual information. We benchmark the adaptive filter's performance against existing nonlinear Kalman filters and explore the sensitivity of the filter parameters to the system being modelled. To evaluate the robustness of the proposed solution, we simulate practical settings that challenge tracking performance, such as a model mismatch and measurement faults. Compared to standard variants of the Kalman filter the adaptive variant implemented here is more accurate and robust to faults.

摘要

状态和参数估计的数据同化技术经常应用于计算神经科学领域。在这项工作中,我们展示了无迹卡尔曼滤波器(UKF)的一种自适应变体在基于电导的神经元模型跟踪中的表现。与标准的递归滤波器实现不同,鲁棒自适应无迹卡尔曼滤波器(RAUKF)在联合估计神经元模型的状态和参数时,会根据新息和残差信息在线调整噪声协方差矩阵。我们将自适应滤波器的性能与现有的非线性卡尔曼滤波器进行基准测试,并探讨滤波器参数对被建模系统的敏感性。为了评估所提出解决方案的鲁棒性,我们模拟了挑战跟踪性能的实际场景,如模型不匹配和测量故障。与卡尔曼滤波器的标准变体相比,这里实现的自适应变体对故障更准确、更鲁棒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验