Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
PLoS Comput Biol. 2012;8(11):e1002788. doi: 10.1371/journal.pcbi.1002788. Epub 2012 Nov 29.
Data assimilation is a valuable tool in the study of any complex system, where measurements are incomplete, uncertain, or both. It enables the user to take advantage of all available information including experimental measurements and short-term model forecasts of a system. Although data assimilation has been used to study other biological systems, the study of the sleep-wake regulatory network has yet to benefit from this toolset. We present a data assimilation framework based on the unscented Kalman filter (UKF) for combining sparse measurements together with a relatively high-dimensional nonlinear computational model to estimate the state of a model of the sleep-wake regulatory system. We demonstrate with simulation studies that a few noisy variables can be used to accurately reconstruct the remaining hidden variables. We introduce a metric for ranking relative partial observability of computational models, within the UKF framework, that allows us to choose the optimal variables for measurement and also provides a methodology for optimizing framework parameters such as UKF covariance inflation. In addition, we demonstrate a parameter estimation method that allows us to track non-stationary model parameters and accommodate slow dynamics not included in the UKF filter model. Finally, we show that we can even use observed discretized sleep-state, which is not one of the model variables, to reconstruct model state and estimate unknown parameters. Sleep is implicated in many neurological disorders from epilepsy to schizophrenia, but simultaneous observation of the many brain components that regulate this behavior is difficult. We anticipate that this data assimilation framework will enable better understanding of the detailed interactions governing sleep and wake behavior and provide for better, more targeted, therapies.
数据同化是研究任何复杂系统的一种有价值的工具,在这些系统中,测量是不完全的、不确定的,或者两者兼而有之。它使用户能够利用所有可用的信息,包括实验测量和系统的短期模型预测。虽然数据同化已经被用于研究其他生物系统,但睡眠-觉醒调节网络的研究尚未受益于这个工具集。我们提出了一个基于无迹卡尔曼滤波器(UKF)的数据同化框架,用于将稀疏的测量值与相对高维的非线性计算模型相结合,以估计睡眠-觉醒调节系统模型的状态。我们通过模拟研究表明,少量噪声变量可用于准确重建其余隐藏变量。我们引入了一种在 UKF 框架内对计算模型的相对部分可观测性进行排序的度量标准,该标准允许我们选择用于测量的最佳变量,还为优化框架参数(如 UKF 协方差膨胀)提供了一种方法。此外,我们还展示了一种参数估计方法,该方法允许我们跟踪非平稳模型参数,并适应 UKF 滤波器模型中未包含的缓慢动态。最后,我们表明,我们甚至可以使用观察到的离散睡眠状态(不是模型变量之一)来重建模型状态并估计未知参数。睡眠与从癫痫到精神分裂症等许多神经障碍有关,但同时观察调节这种行为的许多大脑成分是困难的。我们预计,这个数据同化框架将使我们更好地理解控制睡眠和觉醒行为的详细相互作用,并为更好、更有针对性的治疗方法提供支持。