Suppr超能文献

细菌细胞分裂如何克服膨压——革兰氏阳性菌和革兰氏阴性菌隔膜分裂的统一机制。

How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

作者信息

Erickson Harold P

机构信息

Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA.

出版信息

Bioessays. 2017 Aug;39(8). doi: 10.1002/bies.201700045. Epub 2017 Jul 12.

Abstract

An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria.

摘要

细菌细胞分裂的一个重要问题是,内陷的隔膜如何克服由细胞质的高渗透压产生的膨压。我认为它可能无需如此。多项针对革兰氏阴性菌的研究表明,周质与细胞质是等渗的。间接证据表明,革兰氏阳性菌也是如此。在这种情况下,隔膜的内陷发生在均匀的高渗透压环境中,无需对抗膨压。一个相关问题是,革兰氏阴性菌的V形收缩与革兰氏阳性菌的板状隔膜有何关联。我收集了证据,证明革兰氏阴性菌具有形成板状隔膜的潜在能力,并提出了一个模型,其中隔膜分裂是革兰氏阳性菌和革兰氏阴性菌的基本机制。

相似文献

2
Turgor Pressure and Possible Constriction Mechanisms in Bacterial Division.细菌分裂中的膨压及可能的收缩机制
Front Microbiol. 2018 Jan 31;9:111. doi: 10.3389/fmicb.2018.00111. eCollection 2018.
5
Gram-negative and Gram-positive bacterial extracellular vesicles.革兰氏阴性菌和革兰氏阳性菌的细胞外囊泡。
Semin Cell Dev Biol. 2015 Apr;40:97-104. doi: 10.1016/j.semcdb.2015.02.006. Epub 2015 Feb 19.
6
Regulation of microbial growth by turgor pressure.膨压对微生物生长的调控。
Curr Opin Microbiol. 2018 Apr;42:62-70. doi: 10.1016/j.mib.2017.10.015. Epub 2017 Nov 7.
7
Bacterial cell division.细菌细胞分裂
Annu Rev Cell Dev Biol. 1997;13:395-424. doi: 10.1146/annurev.cellbio.13.1.395.
9
Bacterial cell division and the septal ring.细菌细胞分裂与隔膜环
Mol Microbiol. 2004 Nov;54(3):588-97. doi: 10.1111/j.1365-2958.2004.04283.x.

引用本文的文献

3
Bacterial cell volume regulation and the importance of cyclic di-AMP.细菌细胞体积调节与环二鸟苷酸的重要性。
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0018123. doi: 10.1128/mmbr.00181-23. Epub 2024 Jun 10.
9
Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level.在单细胞水平上理解β-内酰胺诱导的裂解
Front Microbiol. 2021 Jul 27;12:712007. doi: 10.3389/fmicb.2021.712007. eCollection 2021.

本文引用的文献

5
FtsZ Protofilament Curvature Is the Opposite of Tubulin Rings.FtsZ原丝曲率与微管蛋白环相反。
Biochemistry. 2016 Jul 26;55(29):4085-91. doi: 10.1021/acs.biochem.6b00479. Epub 2016 Jul 14.
6
Coordinated disassembly of the divisome complex in Escherichia coli.大肠杆菌中分裂体复合物的协同解体
Mol Microbiol. 2016 Aug;101(3):425-38. doi: 10.1111/mmi.13400. Epub 2016 May 23.
7
Defining the rate-limiting processes of bacterial cytokinesis.定义细菌胞质分裂的限速过程。
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1044-53. doi: 10.1073/pnas.1514296113. Epub 2016 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验