Suppr超能文献

细菌微管蛋白FtsZ的GTP酶活性偶联踏车行为组织隔膜细胞壁合成。

GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis.

作者信息

Yang Xinxing, Lyu Zhixin, Miguel Amanda, McQuillen Ryan, Huang Kerwyn Casey, Xiao Jie

机构信息

Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Science. 2017 Feb 17;355(6326):744-747. doi: 10.1126/science.aak9995.

Abstract

The bacterial tubulin FtsZ is the central component of the cell division machinery, coordinating an ensemble of proteins involved in septal cell wall synthesis to ensure successful constriction. How cells achieve this coordination is unknown. We found that in cells, FtsZ exhibits dynamic treadmilling predominantly determined by its guanosine triphosphatase activity. The treadmilling dynamics direct the processive movement of the septal cell wall synthesis machinery but do not limit the rate of septal synthesis. In FtsZ mutants with severely reduced treadmilling, the spatial distribution of septal synthesis and the molecular composition and ultrastructure of the septal cell wall were substantially altered. Thus, FtsZ treadmilling provides a mechanism for achieving uniform septal cell wall synthesis to enable correct polar morphology.

摘要

细菌微管蛋白FtsZ是细胞分裂机制的核心组成部分,它协调一系列参与隔膜细胞壁合成的蛋白质,以确保成功收缩。细胞如何实现这种协调尚不清楚。我们发现,在细胞中,FtsZ表现出动态踏车行为,主要由其鸟苷三磷酸酶活性决定。踏车行为动力学指导隔膜细胞壁合成机制的持续运动,但不限制隔膜合成的速率。在踏车行为严重降低的FtsZ突变体中,隔膜合成的空间分布以及隔膜细胞壁的分子组成和超微结构发生了显著改变。因此,FtsZ踏车行为提供了一种实现均匀隔膜细胞壁合成以形成正确极性形态的机制。

相似文献

1
3
Movement dynamics of divisome proteins and PBP2x:FtsW in cells of .
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3211-3220. doi: 10.1073/pnas.1816018116. Epub 2019 Feb 4.
4
Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins.
Nat Microbiol. 2020 Mar;5(3):407-417. doi: 10.1038/s41564-019-0657-5. Epub 2020 Jan 20.
5
Cell constriction requires processive septal peptidoglycan synthase movement independent of FtsZ treadmilling in Staphylococcus aureus.
Nat Microbiol. 2024 Apr;9(4):1049-1063. doi: 10.1038/s41564-024-01629-6. Epub 2024 Mar 13.
6
Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis.
Nature. 2018 Feb 22;554(7693):528-532. doi: 10.1038/nature25506. Epub 2018 Feb 14.
7
GTPase activity regulates FtsZ ring positioning in .
Mol Biol Cell. 2024 Jul 1;35(7):ar97. doi: 10.1091/mbc.E23-09-0365. Epub 2024 May 17.
8
Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division.
Science. 2017 Feb 17;355(6326):739-743. doi: 10.1126/science.aak9973.
9
Dynamics of interdomain rotation facilitates FtsZ filament assembly.
J Biol Chem. 2024 Jun;300(6):107336. doi: 10.1016/j.jbc.2024.107336. Epub 2024 May 7.
10
FtsZ dynamics in bacterial division: What, how, and why?
Curr Opin Cell Biol. 2021 Feb;68:163-172. doi: 10.1016/j.ceb.2020.10.013. Epub 2020 Nov 18.

引用本文的文献

1
FtsZ as a novel target for antibiotics development: Promises and challenges.
Acta Pharm Sin B. 2025 Aug;15(8):3978-3996. doi: 10.1016/j.apsb.2025.06.008. Epub 2025 Jun 11.
2
Chloroplast Z-ring dynamics is governed by conserved core regions of evolutionarily divergent FtsZs.
Front Plant Sci. 2025 Jul 30;16:1622675. doi: 10.3389/fpls.2025.1622675. eCollection 2025.
4
Development of Broad-Spectrum Antimicrobial Peptides through the Conjugation of FtsZ-Binding and Cell-Penetrating Peptides.
ACS Infect Dis. 2025 Aug 8;11(8):2190-2204. doi: 10.1021/acsinfecdis.5c00220. Epub 2025 Jul 24.
5
: a model for bacterial cell biology and pathogenesis.
J Bacteriol. 2025 Aug 21;207(8):e0010625. doi: 10.1128/jb.00106-25. Epub 2025 Jul 24.
7
SpoIIE drives asymmetric cell division in by sequential modulation of the cytokinesis machinery.
bioRxiv. 2025 Jun 10:2025.06.09.658746. doi: 10.1101/2025.06.09.658746.
8
EzrA promotes Z-ring formation through interaction of its QNR motif with FtsA.
J Bacteriol. 2025 Jul 24;207(7):e0012525. doi: 10.1128/jb.00125-25. Epub 2025 Jul 3.
10
FtsZ-mediated spatial-temporal control over septal cell wall synthesis.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2426431122. doi: 10.1073/pnas.2426431122. Epub 2025 Jun 30.

本文引用的文献

1
Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division.
Science. 2017 Feb 17;355(6326):739-743. doi: 10.1126/science.aak9973.
4
Defining the rate-limiting processes of bacterial cytokinesis.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1044-53. doi: 10.1073/pnas.1514296113. Epub 2016 Feb 1.
7
A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics.
PLoS Genet. 2015 Apr 7;11(4):e1005128. doi: 10.1371/journal.pgen.1005128. eCollection 2015 Apr.
8
3D-SIM super-resolution of FtsZ and its membrane tethers in Escherichia coli cells.
Biophys J. 2014 Oct 21;107(8):L17-L20. doi: 10.1016/j.bpj.2014.08.024.
9
High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization.
Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4566-71. doi: 10.1073/pnas.1313368111. Epub 2014 Mar 10.
10
The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns.
Nat Cell Biol. 2014 Jan;16(1):38-46. doi: 10.1038/ncb2885. Epub 2013 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验