National Heart Research Institute Singapore, Singapore.
Cardiovascular Academic Clinical Program, DUKE-NUS Medical School, Singapore.
Stem Cells. 2017 Oct;35(10):2129-2137. doi: 10.1002/stem.2665. Epub 2017 Jul 31.
Activation of signal transducer and activator of transcription 3 (STAT3) is imperative for mammalian development, specifically cardiogenesis. STAT3 phosphorylation and acetylation are key post-translational modifications that regulate its transcriptional activity. Significance of such modifications during human cardiogenesis remains elusive. Using human pluripotent stem cells to recapitulate cardiogenesis, two independently modified STAT3α (92 kDa) isoforms (phosphorylated and acetylated), which perform divergent functions were identified during cardiomyocyte (CM) formation. Phosphorylated STAT3α functioned as the canonical transcriptional activator, while acetylated STAT3α underwent caspase-3-mediated cleavage to generate a novel STAT3ζ fragment (∼45 kDa), which acted as a molecular adaptor integral to the ErbB4-p38γ signaling cascade in driving CM formation. While STAT3α knockdown perturbed cardiogenesis by eliminating both post-translationally modified STAT3α isoforms, caspase-3 knockdown specifically abrogates the function of acetylated STAT3α, resulting in limited STAT3ζ formation thereby preventing nuclear translocation of key cardiac transcription factor Nkx2-5 that disrupted CM formation. Our findings show the coexistence of two post-translationally modified STAT3α isoforms with distinct functions and define a new role for STAT3 as a molecular adaptor that functions independently of its canonical transcriptional activity during human cardiogenesis. Stem Cells 2017;35:2129-2137.
转录激活因子 3(STAT3)的激活对于哺乳动物的发育,特别是心脏发生是必不可少的。STAT3 的磷酸化和乙酰化是调节其转录活性的关键翻译后修饰。这些修饰在人类心脏发生中的意义仍不清楚。使用人类多能干细胞来概括心脏发生,在心肌细胞(CM)形成过程中鉴定了两种独立修饰的 STAT3α(92 kDa)同工型(磷酸化和乙酰化),它们具有不同的功能。磷酸化 STAT3α 作为经典的转录激活因子发挥作用,而乙酰化 STAT3α 经半胱天冬酶-3 介导的切割生成新的 STAT3ζ 片段(∼45 kDa),作为与 ErbB4-p38γ 信号级联整合的分子接头,驱动 CM 形成。STAT3α 敲低通过消除两种翻译后修饰的 STAT3α 同工型来干扰心脏发生,而半胱天冬酶-3 敲低特异性地破坏乙酰化 STAT3α 的功能,导致有限的 STAT3ζ 形成,从而阻止关键心脏转录因子 Nkx2-5 的核易位,从而破坏 CM 形成。我们的研究结果表明,两种具有不同功能的翻译后修饰的 STAT3α 同工型共存,并定义了 STAT3 作为分子接头的新作用,其在人类心脏发生过程中独立于其经典转录活性发挥作用。干细胞 2017;35:2129-2137。