Marín J C, Romero K, Rivera R, Johnson W E, González B A
Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Av. Andres Bello 720, Chillán, Chile.
Departamento de Zoología, Universidad de Concepción, Concepción, Chile.
Anim Genet. 2017 Oct;48(5):591-595. doi: 10.1111/age.12570. Epub 2017 Jul 11.
Investigations of genetic diversity and domestication in South American camelids (SAC) have relied on autosomal microsatellite and maternally-inherited mitochondrial data. We present the first integrated analysis of domestic and wild SAC combining male and female sex-specific markers (male specific Y-chromosome and female-specific mtDNA sequence variation) to assess: (i) hypotheses about the origin of domestic camelids, (ii) directionality of introgression among domestic and/or wild taxa as evidence of hybridization and (iii) currently recognized subspecies patterns. Three male-specific Y-chromosome markers and control region sequences of mitochondrial DNA are studied here. Although no sequence variation was found in SRY and ZFY, there were seven variable sites in DBY generating five haplotypes on the Y-chromosome. The haplotype network showed clear separation between haplogroups of guanaco-llama and vicuña-alpaca, indicating two genetically distinct patrilineages with near absence of shared haplotypes between guanacos and vicuñas. Although we document some examples of directional hybridization, the patterns strongly support the hypothesis that llama (Lama glama) is derived from guanaco (Lama guanicoe) and the alpaca (Vicugna pacos) from vicuña (Vicugna vicugna). Within male guanacos we identified a haplogroup formed by three haplotypes with different geographical distributions, the northernmost of which (Peru and northern Chile) was also observed in llamas, supporting the commonly held hypothesis that llamas were domesticated from the northernmost populations of guanacos (L. g. cacilensis). Southern guanacos shared the other two haplotypes. A second haplogroup, consisting of two haplotypes, was mostly present in vicuñas and alpacas. However, Y-chromosome variation did not distinguish the two subspecies of vicuñas.
对南美骆驼科动物(SAC)的遗传多样性和驯化的研究一直依赖于常染色体微卫星和母系遗传的线粒体数据。我们首次对家养和野生南美骆驼科动物进行了综合分析,结合了雄性和雌性特异性标记(雄性特异性Y染色体和雌性特异性线粒体DNA序列变异),以评估:(i)关于家养骆驼科动物起源的假设;(ii)家养和/或野生分类群之间基因渗入的方向性,作为杂交的证据;以及(iii)目前公认的亚种模式。本文研究了三个雄性特异性Y染色体标记和线粒体DNA的控制区序列。虽然在SRY和ZFY中未发现序列变异,但在DBY中有七个可变位点,在Y染色体上产生了五个单倍型。单倍型网络显示原驼-美洲驼和小羊驼-羊驼的单倍型类群之间有明显的分离,表明存在两个遗传上不同的父系谱系,原驼和小羊驼之间几乎没有共享的单倍型。虽然我们记录了一些定向杂交的例子,但这些模式有力地支持了以下假设:美洲驼(Lama glama)起源于原驼(Lama guanicoe),羊驼(Vicugna pacos)起源于小羊驼(Vicugna vicugna)。在雄性原驼中,我们鉴定出一个由三个具有不同地理分布的单倍型组成的单倍型类群,其中最北端的单倍型(秘鲁和智利北部)也在美洲驼中观察到,这支持了普遍接受的假设,即美洲驼是从最北端的原驼种群(L. g. cacilensis)驯化而来的。南部的原驼共享另外两个单倍型。第二个单倍型类群由两个单倍型组成,主要存在于小羊驼和羊驼中。然而,Y染色体变异并没有区分小羊驼的两个亚种。