Suppr超能文献

检测跨专业和设置的临床记录中的临床相关新信息。

Detecting clinically relevant new information in clinical notes across specialties and settings.

机构信息

Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.

Department of Surgery, University of Minnesota, Minneapolis, MN, USA.

出版信息

BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):68. doi: 10.1186/s12911-017-0464-y.

Abstract

BACKGROUND

Automated methods for identifying clinically relevant new versus redundant information in electronic health record (EHR) clinical notes is useful for clinicians and researchers involved in patient care and clinical research, respectively. We evaluated methods to automatically identify clinically relevant new information in clinical notes, and compared the quantity of redundant information across specialties and clinical settings.

METHODS

Statistical language models augmented with semantic similarity measures were evaluated as a means to detect and quantify clinically relevant new and redundant information over longitudinal clinical notes for a given patient. A corpus of 591 progress notes over 40 inpatient admissions was annotated for new information longitudinally by physicians to generate a reference standard. Note redundancy between various specialties was evaluated on 71,021 outpatient notes and 64,695 inpatient notes from 500 solid organ transplant patients (April 2015 through August 2015).

RESULTS

Our best method achieved at best performance of 0.87 recall, 0.62 precision, and 0.72 F-measure. Addition of semantic similarity metrics compared to baseline improved recall but otherwise resulted in similar performance. While outpatient and inpatient notes had relatively similar levels of high redundancy (61% and 68%, respectively), redundancy differed by author specialty with mean redundancy of 75%, 66%, 57%, and 55% observed in pediatric, internal medicine, psychiatry and surgical notes, respectively.

CONCLUSIONS

Automated techniques with statistical language models for detecting redundant versus clinically relevant new information in clinical notes do not improve with the addition of semantic similarity measures. While levels of redundancy seem relatively similar in the inpatient and ambulatory settings in the Fairview Health Services, clinical note redundancy appears to vary significantly with different medical specialties.

摘要

背景

在电子健康记录(EHR)临床记录中自动识别临床相关的新信息与冗余信息对于参与患者护理和临床研究的临床医生和研究人员都很有用。我们评估了自动识别临床记录中新的临床相关信息的方法,并比较了不同专业和临床环境中的冗余信息量。

方法

使用统计语言模型和语义相似度度量来评估检测和量化给定患者纵向临床记录中新的和冗余信息的方法。通过医生对 591 份住院病历进行新信息的纵向注释,为参考标准生成了一个语料库。通过对 500 名实体器官移植患者(2015 年 4 月至 8 月)的 71021 份门诊记录和 64695 份住院记录评估了不同专业之间的记录冗余性。

结果

我们最好的方法在召回率、精度和 F1 度量方面的最佳性能分别为 0.87、0.62 和 0.72。与基线相比,添加语义相似性度量可提高召回率,但在其他方面表现相似。尽管门诊和住院记录的高冗余性水平相对相似(分别为 61%和 68%),但作者专业不同,儿科、内科、精神病学和外科记录的平均冗余率分别为 75%、66%、57%和 55%。

结论

在临床记录中检测冗余信息与临床相关新信息的自动技术不会因添加语义相似性度量而得到改善。虽然在 Fairview Health Services 中,住院和门诊环境中的冗余水平似乎相对相似,但临床记录的冗余性似乎与不同的医学专业有很大的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2f8/5506580/a3bda67f61ca/12911_2017_464_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验