School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Centre for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA.
Nat Commun. 2017 Jul 12;8:16090. doi: 10.1038/ncomms16090.
Optical metamaterials with an artificial subwavelength structure offer new approaches to implement advanced optical devices. However, some of the biggest challenges associated with the development of metamaterials in the visible spectrum are the high costs and slow production speeds of the nanofabrication processes. Here, we demonstrate a macroscale (>35 mm) transformation-optics wave bender (293 mm) and Luneburg lens (855 mm) in the broadband white-light visible wavelength range using the concept of elasto-optic metamaterials that combines optics and solid mechanics. Our metamaterials consist of mesoscopically homogeneous chunks of bulk aerogels with superior, broadband optical transparency across the visible spectrum and an adjustable, stress-tuneable refractive index ranging from 1.43 down to nearly the free space index (∼1.074). The experimental results show that broadband light can be controlled and redirected in a volume of >10λ × 10λ × 10λ, which enables natural light to be processed directly by metamaterial-based optical devices without any additional coupling components.
具有人工亚波长结构的光学超材料为实现先进的光学器件提供了新的途径。然而,在可见光范围内开发超材料所面临的一些最大挑战是纳米制造工艺的高成本和低生产速度。在这里,我们展示了一种基于弹光超材料概念的宏尺度(>35mm)变换光学波导弯曲器(293mm)和伦堡透镜(855mm),其工作波长范围为宽带白光可见光。我们的超材料由具有优越的、宽带光学透明度的块状气凝胶微观均匀块组成,其折射率可调谐,可调范围从 1.43 到接近自由空间指数(~1.074)。实验结果表明,在>10λ×10λ×10λ 的体积内可以控制和重定向宽带光,这使得基于超材料的光学器件可以直接处理自然光,而无需任何额外的耦合组件。