Hammond Oliver S, Bowron Daniel T, Jackson Andrew J, Arnold Thomas, Sanchez-Fernandez Adrian, Tsapatsaris Nikolaos, Garcia Sakai Victoria, Edler Karen J
Centre for Sustainable Chemical Technologies, University of Bath , Claverton Down, Bath BA2 7AY, U.K.
Department of Chemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K.
J Phys Chem B. 2017 Aug 10;121(31):7473-7483. doi: 10.1021/acs.jpcb.7b05454. Epub 2017 Jul 31.
Little is presently known about the unique nanostructure of deep eutectic solvents (DES). The order of the liquid-solid phase transition is contended and whether DES-water mixtures are merely aqueous solutions, or have properties dominated by the eutectic pair, is unclear. Here, we unambiguously show the structure of choline chloride-malic acid (malicine) as a liquid, and also in solid and hydrated forms, using neutron total scattering on D/H isotope-substituted samples, and quasi-elastic neutron scattering (QENS). Data were refined using empirical potential structure refinement. We show evidence for a stoichiometric complex ion cluster in the disordered liquid, with strong choline-chloride bonding and a hydrogen bond donor (HBD) contribution. The 1:1 eutectic stoichiometry makes these ionic domains more well-defined, with less HBD clustering than seen previously for reline. There is minimal structural difference for the solidified material, demonstrating that this DES solidification is a glass transition rather than a first order phase change. QENS data support this by showing a gradual change in solvent dynamics rather than a step change. The DES structure is mostly retained upon hydration, with water acting both as a secondary smaller HBD at closer range to choline than malic acid, and forming transient wormlike aggregates. This new understanding of DES structure will aid understanding of the properties of these novel green solvents on the molecular length scale in chemical processes, as well as giving an insight into the apparent role of natural DESs in plant physiology.
目前,人们对深共晶溶剂(DES)独特的纳米结构知之甚少。液 - 固相变的顺序存在争议,而且DES - 水混合物究竟仅仅是水溶液,还是其性质由共晶对主导尚不清楚。在此,我们利用对D/H同位素取代样品的中子全散射和准弹性中子散射(QENS),明确展示了氯化胆碱 - 苹果酸(malicine)作为液体、固体和水合形式的结构。数据使用经验势结构精修进行了优化。我们证明了在无序液体中存在化学计量的复合离子簇,其中氯化胆碱键合很强,且有氢键供体(HBD)的贡献。1:1的共晶化学计量使这些离子域更加明确,与之前的reline相比,HBD聚集更少。固化材料的结构差异极小,表明这种DES固化是玻璃化转变而非一级相变。QENS数据通过显示溶剂动力学的逐渐变化而非阶跃变化来支持这一点。DES结构在水合后大多得以保留,水在比苹果酸更靠近胆碱的近距离范围内既作为次要的较小HBD起作用,又形成瞬态蠕虫状聚集体。对DES结构的这种新认识将有助于在分子长度尺度上理解这些新型绿色溶剂在化学过程中的性质,同时也能深入了解天然DES在植物生理学中的明显作用。