Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States.
Department of Infectious Disease, Drug Discovery Division, Southern Research , Birmingham, Alabama 35205, United States.
Biomacromolecules. 2017 Aug 14;18(8):2552-2563. doi: 10.1021/acs.biomac.7b00687. Epub 2017 Jul 24.
We report a versatile synthesis for polyphenolic polymersomes of controlled submicron (<500 nm) size for intracellular delivery of high and low molecular weight compounds. The nanoparticles are synthesized by stabilizing the vesicular morphology of thermally responsive poly(N-vinylcaprolactam)-b-poly(N-vinylpyrrolidone) (PVCL-PVPON) diblock copolymers with tannic acid (TA), a hydrolyzable polyphenol, via hydrogen bonding at a temperature above the copolymer's lower critical solution temperature (LCST). The PVCL-PVPON diblock copolymers are produced by controlled reversible addition-fragmentation chain transfer (RAFT) polymerization of PVPON using PVCL as a macro-chain transfer agent. The size of the TA-locked (PVCL-PVPON) polymersomes at room temperature and upon temperature variations are controlled by the PVPON chain length and TA:PVPON molar unit ratio. The particle diameter decreases from 1000 to 950, 770, and 250 nm with increasing PVPON chain length (m = 107, 166, 205, 234), and it further decreases to 710, 460, 290, and 190 nm, respectively, upon hydrogen bonding with TA at 50 °C. Lowering the solution temperature to 25 °C results in a slight size increase for vesicles with longer PVPON. We also show that TA-locked polymersomes can encapsulate and store the anticancer drug doxorubicin (DOX) and higher molecular weight fluorescein isothiocyanate (FITC)-dextran in a physiologically relevant pH and temperature range. Encapsulated DOX is released in the nuclei of human alveolar adenocarcinoma tumor cells after 6 h incubation via biodegradation of the TA shell with the cytotoxicity of DOX-loaded polymersomes being concentration-dependent. Our approach offers biocompatible and intracellular degradable nanovesicles of controllable size for delivery of a variety of encapsulated materials. Considering the particle monodispersity, high loading capacity, and a facile two-step aqueous assembly based on the reversible temperature-responsiveness of PVCL, these polymeric vesicles have significant potential as novel drug nanocarriers and provide a new perspective for fundamental studies on thermo-triggered polymer assemblies in solutions.
我们报告了一种多功能的合成方法,用于合成具有亚微米(<500nm)尺寸的多酚聚合物囊泡,用于细胞内递高低分子量化合物。这些纳米粒子是通过在高于共聚物低临界溶液温度(LCST)的温度下,用单宁酸(TA)稳定热响应性聚(N-乙烯基己内酰胺)-b-聚(N-乙烯基吡咯烷酮)(PVCL-PVPON)两亲嵌段共聚物的囊泡形态来合成的,TA 是一种可水解的多酚,通过氢键相互作用。PVCL-PVPON 两亲嵌段共聚物是通过使用 PVCL 作为大分子链转移剂,通过可控的可逆加成-断裂链转移(RAFT)聚合 PVPON 来制备的。在室温下和温度变化时,TA 锁定(PVCL-PVPON)聚合物囊泡的尺寸由 PVPON 链长和 TA:PVPON 摩尔单元比控制。随着 PVPON 链长(m=107、166、205、234)的增加,粒径从 1000nm 减小至 950nm、770nm、250nm,当在 50°C 下与 TA 氢键相互作用时,粒径进一步减小至 710nm、460nm、290nm 和 190nm。将溶液温度降低至 25°C 时,具有较长 PVPON 的囊泡的尺寸略有增加。我们还表明,TA 锁定聚合物囊泡可以在生理相关的 pH 和温度范围内封装和储存抗癌药物阿霉素(DOX)和高分子量荧光素异硫氰酸酯(FITC)-葡聚糖。封装的 DOX 在 6 小时孵育后通过 TA 壳的生物降解释放到人肺泡腺癌肿瘤细胞的细胞核中,载药聚合物囊泡的细胞毒性与 DOX 浓度有关。我们的方法为各种封装材料的输送提供了具有生物相容性和可在细胞内降解的可控尺寸的纳米囊泡。考虑到粒子单分散性、高载药量以及基于 PVCL 可逆温度响应性的两步简便水相组装,这些聚合物囊泡作为新型药物纳米载体具有很大的潜力,并为溶液中热触发聚合物组装的基础研究提供了新的视角。