Suppr超能文献

一种用于宫颈细胞学扩展景深和体积图像中核和重叠细胞质分割的框架。

A framework for nucleus and overlapping cytoplasm segmentation in cervical cytology extended depth of field and volume images.

机构信息

Department of Computer Science and Engineering, University of South Florida, Tampa, FL, United States.

Department of Computer Science and Engineering, University of South Florida, Tampa, FL, United States.

出版信息

Comput Med Imaging Graph. 2017 Jul;59:38-49. doi: 10.1016/j.compmedimag.2017.06.007. Epub 2017 Jul 3.

Abstract

We propose a framework to detect and segment nuclei and segment overlapping cytoplasm in cervical cytology images. This is a challenging task due to folded cervical cells with spurious edges, poor contrast of cytoplasm and presence of neutrophils and artifacts. The algorithm segments nuclei and cell clumps in extended depth of field (EDF) images and uses volume images to segment overlapping cytoplasm. The boundaries are first approximated by a defined similarity metric and are refined in two steps by reducing concavity, iterative smoothing and outliers removal. We evaluated our framework on two public datasets provided in the first and second overlapping cervical cell segmentation challenges (ISBI 2014 and 2015). The results show that our method outperforms other state-of-the-art algorithms on both datasets. The results on the ISBI 2014 dataset show that our method missed less than 5% of cells when the pairwise cell overlapping degree was not higher than 0.3 and it missed only 7% of cells on average in a dataset of 810 synthetic images with 4860 (overlapping) cells. On the same dataset, it outperforms other state-of-the-art methods in nucleus detection with precision 0.961 and recall 0.933. The results on the ISBI 2015 dataset containing real cervical EDF images show that our method misses around 20% of cells in EDF images where a segmentation is considered a miss if it has dice similarity coefficient not greater than 0.7. The 20% miss rate is around half of the miss rate of two other recent methods.

摘要

我们提出了一种用于检测和分割宫颈细胞学图像中的细胞核和重叠细胞质的框架。这是一项具有挑战性的任务,因为宫颈细胞存在折叠、细胞质对比度差、存在中性粒细胞和伪影等问题。该算法在扩展景深 (EDF) 图像中分割细胞核和细胞团,并使用体积图像分割重叠的细胞质。边界首先通过定义的相似性度量来近似,然后通过减少凹度、迭代平滑和去除异常值来分两步进行细化。我们在第一个和第二个重叠宫颈细胞分割挑战 (ISBI 2014 和 2015) 中提供的两个公共数据集上评估了我们的框架。结果表明,我们的方法在两个数据集上均优于其他最先进的算法。在 ISBI 2014 数据集上的结果表明,当细胞对重叠度不高于 0.3 时,我们的方法错过的细胞不到 5%,在一个包含 810 张合成图像和 4860 个(重叠)细胞的数据集上,平均只错过 7%的细胞。在同一数据集上,在细胞核检测方面,我们的方法优于其他最先进的方法,精度为 0.961,召回率为 0.933。在包含真实宫颈 EDF 图像的 ISBI 2015 数据集上的结果表明,我们的方法在 EDF 图像中错过约 20%的细胞,如果分割的骰子相似系数不大于 0.7,则认为分割失败。20%的漏检率约为其他两种最近方法的漏检率的一半。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验