Suppr超能文献

甲硫氨酸合酶在[具体情况1]和[具体情况2]中定位于细胞核,而在[具体情况3]中定位于细胞质。

Methionine synthase is localized to the nucleus in and and to the cytoplasm in .

作者信息

Sahu Umakant, Rajendra Vinod K H, Kapnoor Shankar S, Bhagavat Raghu, Chandra Nagasuma, Rangarajan Pundi N

机构信息

From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.

From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India

出版信息

J Biol Chem. 2017 Sep 8;292(36):14730-14746. doi: 10.1074/jbc.M117.783019. Epub 2017 Jul 12.

Abstract

Methionine synthase (MS) catalyzes methylation of homocysteine, the last step in the biosynthesis of methionine, which is essential for the regeneration of tetrahydrofolate and biosynthesis of -adenosylmethionine. Here, we report that MS is localized to the nucleus of and but is cytoplasmic in The strain carrying a deletion of the gene encoding MS () exhibits methionine as well as adenine auxotrophy indicating that MS is required for methionine as well as adenine biosynthesis. Nuclear localization of MS (PpMS) was abrogated by the deletion of 107 C-terminal amino acids or the R742A mutation. analysis of the PpMS structure indicated that PpMS may exist in a dimer-like configuration in which Arg-742 of a monomer forms a salt bridge with Asp-113 of another monomer. Biochemical studies indicate that R742A as well as D113R mutations abrogate nuclear localization of PpMS and its ability to reverse methionine auxotrophy of Thus, association of two PpMS monomers through the interaction of Arg-742 and Asp-113 is essential for catalytic activity and nuclear localization. When PpMS is targeted to the cytoplasm employing a heterologous nuclear export signal, it is expressed at very low levels and is unable to reverse methionine and adenine auxotrophy of Thus, nuclear localization is essential for the stability and function of MS in We conclude that nuclear localization of MS is a unique feature of respiratory yeasts such as and and it may have novel moonlighting functions in the nucleus.

摘要

甲硫氨酸合成酶(MS)催化同型半胱氨酸的甲基化反应,这是甲硫氨酸生物合成的最后一步,对于四氢叶酸的再生和S-腺苷甲硫氨酸的生物合成至关重要。在此,我们报道MS定位于粟酒裂殖酵母和酿酒酵母的细胞核中,但在白色念珠菌中位于细胞质中。携带编码MS的MET6基因缺失的粟酒裂殖酵母菌株(met6)表现出甲硫氨酸和腺嘌呤营养缺陷型,表明MS对于甲硫氨酸以及腺嘌呤的生物合成是必需的。删除107个C末端氨基酸或R742A突变消除了粟酒裂殖酵母MS(PpMS)的核定位。对PpMS结构的分析表明,PpMS可能以二聚体样构型存在,其中一个单体的Arg-742与另一个单体的Asp-113形成盐桥。生化研究表明,R742A以及D113R突变消除了PpMS的核定位及其逆转粟酒裂殖酵母甲硫氨酸营养缺陷型的能力。因此,两个PpMS单体通过Arg-742和Asp-113的相互作用缔合对于催化活性和核定位至关重要。当使用异源核输出信号将PpMS靶向细胞质时,它以非常低的水平表达,并且无法逆转粟酒裂殖酵母的甲硫氨酸和腺嘌呤营养缺陷型。因此,核定位对于粟酒裂殖酵母中MS的稳定性和功能至关重要。我们得出结论,MS的核定位是呼吸酵母如粟酒裂殖酵母和酿酒酵母的独特特征,并且它可能在细胞核中具有新的兼职功能。

相似文献

2
Cloning and identification of methionine synthase gene from Pichia pastoris.毕赤酵母甲硫氨酸合成酶基因的克隆与鉴定
Acta Biochim Biophys Sin (Shanghai). 2005 Jun;37(6):371-8. doi: 10.1111/j.1745-7270.2005.00054.x.
6
Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans.白色念珠菌甲硫氨酸合酶定点突变体的动力学分析
Biochem Biophys Res Commun. 2009 May 15;382(4):730-4. doi: 10.1016/j.bbrc.2009.03.098. Epub 2009 Mar 24.

引用本文的文献

本文引用的文献

7
Rapid isolation of yeast nuclei.快速分离酵母核。
Curr Genet. 1981 Nov;4(2):85-90. doi: 10.1007/BF00365686.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验