Department of Clinical Sciences Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, CRC, Skåne University Hospital, 20502, Malmö, Sweden.
Department of Clinical Sciences Malmö, Unit of Neuroendocrine Cell Biology, Lund University Diabetes Centre, CRC, Skåne University Hospital, 20502, Malmö, Sweden.
Mol Metab. 2017 May 19;6(7):651-663. doi: 10.1016/j.molmet.2017.05.005. eCollection 2017 Jul.
Insulin release from pancreatic β-cells is controlled by plasma glucose levels via mitochondrial fuel metabolism. Therefore, insulin secretion is critically dependent on mitochondrial DNA (mtDNA) and the genes it encodes. Mitochondrial transcription factor B2 (TFB2M) controls transcription of mitochondrial-encoded genes. However, its precise role in mitochondrial metabolism in pancreatic β-cells and, consequently, in insulin secretion remains unknown.
To elucidate the role of TFB2M in mitochondrial function and insulin secretion and , mice with a β-cell specific homozygous or heterozygous knockout of and rat clonal insulin-producing cells in which the gene was silenced were examined with an array of metabolic and functional assays.
There was an effect of gene dosage on expression and function. Loss of led to diabetes due to disrupted transcription of mitochondrial DNA (mtDNA) and reduced mtDNA content. The ensuing mitochondrial dysfunction activated compensatory mechanisms aiming to limit cellular dysfunction and damage of β-cells. These processes included the mitochondrial unfolded protein response, mitophagy, and autophagy. Ultimately, however, these cell-protective systems were overridden, leading to mitochondrial dysfunction and activation of mitochondrial-dependent apoptotic pathways. In this way, β-cell function and mass were reduced. Together, these perturbations resulted in impaired insulin secretion, progressive hyperglycemia, and, ultimately, development of diabetes.
Loss of in pancreatic β-cells results in progressive mitochondrial dysfunction. Consequently, insulin secretion in response to metabolic stimuli is impaired and β-cell mass reduced. Our findings indicate that TFB2M plays an important functional role in pancreatic β-cells. Perturbations of its actions may lead to loss of functional β-cell mass, a hallmark of T2D.
胰腺 β 细胞中的胰岛素释放受血浆葡萄糖水平通过线粒体燃料代谢的控制。因此,胰岛素分泌对线粒体 DNA(mtDNA)及其编码基因有严格的依赖性。线粒体转录因子 B2(TFB2M)控制线粒体编码基因的转录。然而,其在胰腺 β 细胞中线粒体代谢中的精确作用,以及随之而来的胰岛素分泌作用仍然未知。
为了阐明 TFB2M 在胰岛β细胞中线粒体功能和胰岛素分泌中的作用,我们使用一系列代谢和功能测定方法,检查了胰岛β细胞特异性杂合或纯合敲除 和基因沉默的大鼠克隆胰岛素产生细胞中的 和 。
基因剂量对 和功能有影响。由于线粒体 DNA(mtDNA)转录中断和 mtDNA 含量减少, 的缺失导致糖尿病。随之而来的线粒体功能障碍激活了旨在限制β细胞功能障碍和损伤的代偿机制。这些过程包括线粒体未折叠蛋白反应、线粒体自噬和自噬。然而,最终这些细胞保护系统被超越,导致线粒体功能障碍和线粒体依赖性凋亡途径的激活。这样,β细胞功能和质量就会降低。总的来说,这些干扰导致胰岛素分泌受损、高血糖进行性加重,最终导致糖尿病的发生。
胰腺β细胞中 的缺失导致进行性的线粒体功能障碍。因此,对代谢刺激的胰岛素分泌受损,β细胞质量减少。我们的发现表明 TFB2M 在胰腺β细胞中发挥着重要的功能作用。其作用的扰乱可能导致功能性β细胞数量的丧失,这是 T2D 的一个标志。