Collier Justin B, Kang Hong Soon, Roh Yun-Gil, Srivastava Chitrangda, Grimm Sara A, Jarmusch Alan K, Jetten Anton M
Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
Mol Metab. 2024 Dec;90:102052. doi: 10.1016/j.molmet.2024.102052. Epub 2024 Nov 5.
Deficiency in the transcription factor (TF) GLI-Similar 3 (GLIS3) in humans and mice leads to the development of polycystic kidney disease (PKD). In this study, we investigate the role of GLIS3 in the regulation of energy metabolism and mitochondrial functions in relation to its role in normal kidney and metabolic reprogramming in PKD pathogenesis.
Transcriptomics, cistromics, and metabolomics were used to obtain insights into the role of GLIS3 in the regulation of energy homeostasis and mitochondrial metabolism in normal kidney and PKD pathogenesis using GLIS3-deficient mice.
Transcriptome analysis showed that many genes critical for mitochondrial biogenesis, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and the tricarboxylic acid (TCA) cycle, including Tfam, Tfb1m, Tfb2m, Ppargc1a, Ppargc1b, Atp5j2, Hadha, and Sdha, are significantly suppressed in kidneys from both ubiquitous and tissue-specific Glis3-deficient mice. ChIP-Seq analysis demonstrated that GLIS3 is associated with the regulatory region of many of these genes, indicating that their transcription is directly regulated by GLIS3. Cistrome analyses revealed that GLIS3 binding loci frequently located near those of hepatocyte nuclear factor 1-Beta (HNF1B) and nuclear respiratory factor 1 (NRF1) suggesting GLIS3 regulates transcription of many metabolic and mitochondrial function-related genes in coordination with these TFs. Seahorse analysis and untargeted metabolomics corroborated that mitochondrial OXPHOS utilization is suppressed in GLIS3-deficient kidneys and showed that key metabolites in glycolysis, TCA cycle, and glutamine pathways were altered indicating increased reliance on aerobic glycolysis and glutamine anaplerosis. These features of metabolic reprogramming may contribute to a bioenergetic environment that supports renal cyst formation and progression in Glis3-deficient mice kidneys.
We identify GLIS3 as a novel positive regulator of the transition from aerobic glycolysis to OXPHOS in normal early postnatal kidney development by directly regulating the transcription of mitochondrial metabolic genes. Loss of GLIS3 induces several features of renal cell metabolic reprogramming. Our study identifies GLIS3 as a new participant in an interconnected transcription regulatory network, that includes HNF1B and NRF1, critical in the regulation of mitochondrial-related gene expression and energy metabolism in normal postnatal kidneys and PKD pathogenesis in Glis3-deficient mice.
人类和小鼠中转录因子(TF)GLI-相似3(GLIS3)的缺乏会导致多囊肾病(PKD)的发生。在本研究中,我们探究GLIS3在能量代谢调节和线粒体功能方面的作用,及其在正常肾脏中的作用以及在PKD发病机制中的代谢重编程作用。
利用转录组学、顺式作用元件组学和代谢组学,通过GLIS3缺陷小鼠来深入了解GLIS3在正常肾脏和PKD发病机制中对能量稳态和线粒体代谢调节的作用。
转录组分析表明,许多对线粒体生物发生、氧化磷酸化(OXPHOS)、脂肪酸氧化(FAO)和三羧酸(TCA)循环至关重要的基因,包括Tfam、Tfb1m、Tfb2m、Ppargc1a、Ppargc1b、Atp5j2、Hadha和Sdha,在全身和组织特异性Glis3缺陷小鼠的肾脏中均受到显著抑制。染色质免疫沉淀测序(ChIP-Seq)分析表明,GLIS3与许多这些基因的调控区域相关联,表明它们的转录直接受GLIS3调控。顺式作用元件组分析揭示,GLIS3结合位点经常位于肝细胞核因子1-β(HNF1B)和核呼吸因子1(NRF1)的结合位点附近,这表明GLIS3与这些转录因子协同调节许多与代谢和线粒体功能相关基因的转录。海马分析和非靶向代谢组学证实,GLIS3缺陷的肾脏中线粒体OXPHOS利用率受到抑制,并表明糖酵解、TCA循环和谷氨酰胺途径中的关键代谢物发生了改变,这表明对有氧糖酵解和谷氨酰胺回补的依赖性增加。代谢重编程的这些特征可能有助于形成一种生物能量环境,支持Glis3缺陷小鼠肾脏中肾囊肿的形成和进展。
我们确定GLIS3是正常出生后早期肾脏发育中从有氧糖酵解向OXPHOS转变的新型正向调节因子,它通过直接调节线粒体代谢基因的转录来实现这一作用。GLIS3的缺失诱导了肾细胞代谢重编程的几个特征。我们的研究确定GLIS3是一个相互关联的转录调控网络中的新参与者,该网络包括HNF1B和NRF1,在正常出生后肾脏中线粒体相关基因表达和能量代谢的调节以及Glis3缺陷小鼠的PKD发病机制中起关键作用。