Fraunhofer-Chalmers Centre, Department of Systems and Data Analysis, Chalmers Science Park, 412 88, Gothenburg, Sweden.
Department of Biomedical Engineering and Center for Integrative Electrocardiology (CIEL), Lund University, Box 118, 221 00, Lund, Sweden.
Med Biol Eng Comput. 2018 Feb;56(2):247-259. doi: 10.1007/s11517-017-1684-0. Epub 2017 Jul 13.
Characterisation of the AV-node is an important step in determining the optimal form of treatment for supraventricular tachycardias. To integrate and analyse patient-specific measurements, mathematical modelling has emerged as a valuable tool. Here we present a model of the human AV-node, consisting of a series of interacting nodes, each with separate dynamics in refractory time and conduction delay. The model is evaluated in several scenarios, including atrial fibrillation (AF) and clinical pacing, using simulated and measured data. The model is able to replicate signals derived from clinical ECG data as well as from invasive measurements, both under AF and pacing. To quantify the uncertainty in parameter estimation, 1000 parameter sets were sampled, showing that model output similar to data corresponds to limited regions in the model parameter space. The model is the first human AV-node model to capture both spatial and temporal dynamics while being efficient enough to allow interactive use on clinical timescales, as well as parameter estimation and uncertainty quantification. As such, it fills a new niche in the current set of published models and forms a valuable tool for both understanding and clinical research.
房室结(AV 结)的特性分析是确定治疗室上性心动过速的最佳方法的重要步骤。为了整合和分析患者特定的测量数据,数学建模已经成为一种有价值的工具。在这里,我们提出了一个人类房室结模型,由一系列相互作用的节点组成,每个节点的不应期和传导延迟具有独立的动力学特性。该模型在包括房颤(AF)和临床起搏在内的几种情况下进行了评估,使用了模拟和测量数据。该模型能够复制从临床 ECG 数据以及从 AF 和起搏时的侵入性测量中得出的信号。为了量化参数估计的不确定性,我们对 1000 个参数集进行了采样,结果表明,与数据相似的模型输出对应于模型参数空间中的有限区域。该模型是第一个能够同时捕捉空间和时间动力学的人类房室结模型,同时其效率足够高,允许在临床时间尺度上进行交互式使用,以及参数估计和不确定性量化。因此,它填补了当前发表的模型集的一个新空白,并成为理解和临床研究的有价值的工具。