Shi Shuiliang, Wang Congrong, Chan Albert, Kirmani Kashif, Eckert George J, Trippel Stephen B
1 Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
2 Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA.
Cartilage. 2019 Jan;10(1):102-110. doi: 10.1177/1947603517719317. Epub 2017 Jul 13.
The production of extracellular matrix is a necessary component of articular cartilage repair. Gene transfer is a promising method to improve matrix biosynthesis by articular chondrocytes. Gene transfer may employ transgenes encoding regulatory factors that stimulate the production of matrix proteins, or may employ transgenes that encode the proteins themselves. The objective of this study was to determine which of these 2 approaches would be the better choice for further development. We compared these 2 approaches using the transgenes encoding the structural matrix proteins, aggrecan or type II collagen, and the transgene encoding the anabolic factor, insulin-like growth factor I (IGF-I).
We transfected adult bovine articular chondrocytes with constructs encoding type II collagen, aggrecan, or IGF-I, and measured the expression of type II collagen ( COL2A1) and aggrecan ( ACAN) from their native genes and from their transgenes.
IGF-I gene ( IGF1) transfer increased the expression of the native chondrocyte COL2A1 and ACAN genes 2.4 and 2.9 times control, respectively. COL2A1 gene transfer did not significantly increase COL2A1 transcripts, even when the transgene included the genomic COL2A1 regulatory sequences stimulated by chondrogenic growth factors. In contrast, ACAN gene transfer increased ACAN transcripts up to 3.4 times control levels. IGF1, but not ACAN, gene transfer increased aggrecan protein production.
Taken together, these results suggest that the type II collagen and aggrecan production required for articular cartilage repair will be more effectively achieved by genes that encode anabolic regulatory factors than by genes that encode the matrix molecules themselves.
细胞外基质的产生是关节软骨修复的必要组成部分。基因转移是一种有望改善关节软骨细胞基质生物合成的方法。基因转移可采用编码刺激基质蛋白产生的调节因子的转基因,也可采用编码蛋白本身的转基因。本研究的目的是确定这两种方法中哪一种更适合进一步开发。我们使用编码结构基质蛋白(聚集蛋白聚糖或II型胶原蛋白)的转基因以及编码合成代谢因子胰岛素样生长因子I(IGF-I)的转基因来比较这两种方法。
我们用编码II型胶原蛋白、聚集蛋白聚糖或IGF-I的构建体转染成年牛关节软骨细胞,并测量其天然基因和转基因中II型胶原蛋白(COL2A1)和聚集蛋白聚糖(ACAN)的表达。
IGF-I基因(IGF1)转移使天然软骨细胞COL2A1和ACAN基因的表达分别比对照增加2.4倍和2.9倍。即使转基因包含由软骨形成生长因子刺激的基因组COL2A1调节序列,COL2A1基因转移也未显著增加COL2A1转录本。相比之下,ACAN基因转移使ACAN转录本增加至对照水平的3.4倍。IGF1基因转移而非ACAN基因转移增加了聚集蛋白聚糖的蛋白产生。
综上所述,这些结果表明,关节软骨修复所需的II型胶原蛋白和聚集蛋白聚糖的产生,通过编码合成代谢调节因子的基因比通过编码基质分子本身的基因能更有效地实现。