Macgregor H C, Sessions S K
Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):243-59. doi: 10.1098/rstb.1986.0005.
The functional and evolutionary significance of highly repetitive, simple sequence (satellite) DNA is analysed by examining available information on the patterns of variation of heterochromatin and cloned satellites among newts (family Salamandridae), and particularly species of the European genus Triturus. This information is used to develop a model linking evolutionary changes in satellite DNAs and chromosome structure. In this model, satellites accumulate initially in large tandem blocks around centromeres of some or all of the chromosomes, mainly by repeated chromosomal exchanges in these regions. Centromeric blocks later become broken up and dispersed by small, random chromosome rearrangements in these regions. They are dispersed first to pericentric locations and then gradually more distally into the chromosome arms and telomeres. Dispersal of a particular satellite is accompanied by changes in sequence structure (for example, base substitutions, deletions, etc.) and a corresponding decrease in its detectability at either the molecular or cytological level. On the basis of this model, observed satellites in newt species may be classified as 'old', 'young', or of 'intermediate' phylogenetic age. The functions and effects of satellite DNA and heterochromatin at the cellular and organismal levels are also discussed. It is suggested that satellite DNA may have an impact on cell proliferation through the effect of late-replicating satellite-rich heterochromatin on the duration of S-phase of the cell cycle. It is argued that even small alterations in cell cycle time due to changes in heterochromatin amount may have magnified effects on organismal growth that may be of adaptive significance.
通过研究蝾螈(蝾螈科),特别是欧洲真螈属物种中异染色质和克隆卫星序列的变异模式的现有信息,分析了高度重复的简单序列(卫星)DNA的功能和进化意义。这些信息被用于建立一个将卫星DNA的进化变化与染色体结构联系起来的模型。在这个模型中,卫星序列最初主要通过这些区域的重复染色体交换,在部分或全部染色体的着丝粒周围积累成大的串联块。着丝粒块随后因这些区域的小的随机染色体重排而被分解和分散。它们首先分散到着丝粒周围区域,然后逐渐更向远端分散到染色体臂和端粒。特定卫星序列的分散伴随着序列结构的变化(例如,碱基替换、缺失等)以及在分子或细胞学水平上其可检测性的相应降低。基于这个模型,蝾螈物种中观察到的卫星序列可被分类为“古老的”、“年轻的”或“中间”系统发育年龄的。还讨论了卫星DNA和异染色质在细胞和生物体水平上的功能和影响。有人提出,卫星DNA可能通过富含卫星序列的晚期复制异染色质对细胞周期S期持续时间的影响,对细胞增殖产生影响。有人认为,即使由于异染色质数量变化导致细胞周期时间的微小改变,也可能对生物体生长产生放大效应,这可能具有适应性意义。