Schertl Peter, Danne Lennart, Braun Hans-Peter
Institut für Pflanzengenetik, Leibniz Universität Hannover, 30419 Hannover, Germany.
Institut für Pflanzengenetik, Leibniz Universität Hannover, 30419 Hannover, Germany
Plant Physiol. 2017 Sep;175(1):51-61. doi: 10.1104/pp.17.00649. Epub 2017 Jul 13.
In plants, amino acid catabolism is especially relevant in metabolic stress situations (e.g. limited carbohydrate availability during extended darkness). Under these conditions, amino acids are used as alternative substrates for respiration. Complete oxidation of the branched-chain amino acids (BCAAs) leucine, isoleucine (Ile), and valine (Val) in the mitochondria efficiently allows the formation of ATP by oxidative phosphorylation. However, the metabolic pathways for BCAA breakdown are largely unknown so far in plants. A systematic search for Arabidopsis () genes encoding proteins resembling enzymes involved in BCAA catabolism in animals, fungi, and bacteria as well as proteomic analyses of mitochondrial fractions from Arabidopsis allowed the identification of a putative 3-hydroxyisobutyrate dehydrogenase, AtHDH1 (At4g20930), involved in Val degradation. Systematic substrate screening analyses revealed that the protein uses 3-hydroxyisobutyrate but additionally 3-hydroxypropionate as substrates. This points to a role of the enzyme not only in Val but possibly also in Ile metabolism. At4g20930 knockdown plants were characterized to test this conclusion. Root toxicity assays revealed increased root growth inhibition of the mutants if cultivated in the presence of Val or Ile but not in the presence of leucine. We conclude that AtHDH1 has a dual role in BCAA metabolism in plants.
在植物中,氨基酸分解代谢在代谢应激情况下(例如在长时间黑暗期间碳水化合物供应有限)尤为重要。在这些条件下,氨基酸被用作呼吸作用的替代底物。线粒体中支链氨基酸(BCAAs)亮氨酸、异亮氨酸(Ile)和缬氨酸(Val)的完全氧化通过氧化磷酸化有效地促进了ATP的形成。然而,到目前为止,植物中BCAA分解代谢的代谢途径在很大程度上仍不清楚。通过系统搜索拟南芥中编码与动物、真菌和细菌中参与BCAA分解代谢的酶相似的蛋白质的基因,以及对拟南芥线粒体组分进行蛋白质组分析,鉴定出一种推定的3-羟基异丁酸脱氢酶AtHDH1(At4g20930),它参与缬氨酸的降解。系统的底物筛选分析表明,该蛋白质不仅使用3-羟基异丁酸,还使用3-羟基丙酸作为底物。这表明该酶不仅在缬氨酸代谢中起作用,可能在异亮氨酸代谢中也起作用。对At4g20930基因敲除植株进行表征以验证这一结论。根毒性试验表明,如果在缬氨酸或异亮氨酸存在的情况下培养,突变体的根生长抑制增加,而在亮氨酸存在的情况下则没有。我们得出结论,AtHDH1在植物BCAA代谢中具有双重作用。