Suppr超能文献

轴(AXSIS):探索阿秒X射线科学、成像及光谱学的前沿领域。

AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy.

作者信息

Kärtner F X, Ahr F, Calendron A-L, Çankaya H, Carbajo S, Chang G, Cirmi G, Dörner K, Dorda U, Fallahi A, Hartin A, Hemmer M, Hobbs R, Hua Y, Huang W R, Letrun R, Matlis N, Mazalova V, Mücke O D, Nanni E, Putnam W, Ravi K, Reichert F, Sarrou I, Wu X, Yahaghi A, Ye H, Zapata L, Zhang D, Zhou C, Miller R J D, Berggren K K, Graafsma H, Meents A, Assmann R W, Chapman H N, Fromme P

机构信息

Center for Free-Electron Laser Science, Hamburg, Germany.

Institute for Experimental Physics, University of Hamburg, Hamburg, Germany.

出版信息

Nucl Instrum Methods Phys Res A. 2016 Sep 1;829:24-29. doi: 10.1016/j.nima.2016.02.080. Epub 2016 Feb 27.

Abstract

X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven atto-second X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser-, accelerator,- X-ray scientists as well as spectroscopists and biochemists optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. Ultimately, the new capability, attosecond serial X-ray crystallography and spectroscopy, will be applied to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis.

摘要

X射线晶体学是确定从无机小分子簇到由数十万原子组成的大型蛋白质复合物等各种分子的原子分辨率三维图像的主要方法之一,这些大型蛋白质复合物构成了生命的大分子机制。生命不是静态的,揭示化学和生物学中最重要反应的结构和动力学对于揭示其机制至关重要。许多此类反应,包括驱动我们生物圈的光合作用,都是光诱导的,且发生在超快时间尺度上。这些反应主要通过超快激光技术实现的光学光谱学进行了高时间分辨率的研究,但它们将过程的巨大复杂性简化为几个反应坐标。在由欧洲研究理事会资助的汉堡CFEL的AXSIS项目中,我们开发了阿秒级连续X射线晶体学和光谱学的新方法,通过同时测量X射线光谱、光学光谱和X射线衍射,在真实空间和电子能量景观中以原子分辨率全面描述超快过程。这项技术将彻底改变我们在原子和分子水平上对结构和功能的理解,从而揭示化学和生物学中的基本过程,如能量转换过程。为此,我们基于自由电子晶体上的相干逆康普顿散射,开发了一种紧凑、完全相干、太赫兹驱动的阿秒级X射线源,以克服由于获取衍射信号所需的高X射线辐照度而产生的辐射损伤效应。这个高度协同的项目从零开始,而不是遵循大型自由电子激光(FEL)用户设施的规格,以优化整个仪器设备,用于对光吸收和激发能量转移机制的基础测量。由激光科学家、加速器科学家、X射线科学家以及光谱学家和生物化学家组成的多学科团队,与样品输送、晶体尺寸和先进的X射线探测器协同优化X射线脉冲参数。最终,阿秒级连续X射线晶体学和光谱学这一新能力将应用于结构生物学中最重要的问题之一,即阐明光合作用中光反应、电子转移和蛋白质结构的动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/729a/5502815/01a034aa8491/nihms872713f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验