Hui Dandan, Alqattan Husain, Sennary Mohamed, Golubev Nikolay V, Hassan Mohammed Th
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Sci Adv. 2024 Aug 23;10(34):eadp5805. doi: 10.1126/sciadv.adp5805. Epub 2024 Aug 21.
Advances in attosecond spectroscopy have enabled tracing and controlling the electron motion dynamics in matter, although they have yielded insufficient information about the electron dynamic in the space domain. Hence, ultrafast electron and x-ray imaging tools have been developed to image the ultrafast dynamics of matter in real time and space. The cutting-edge temporal resolution of these imaging tools is on the order of a few tens to a hundred femtoseconds, limiting imaging to the atomic dynamics and leaving electron motion imaging out of reach. Here, we obtained the attosecond temporal resolution in the transmission electron microscope, which we coined "attomicroscopy." We demonstrated this resolution by the attosecond diffraction measurements of the field-driven electron dynamics in graphene. This attosecond imaging tool would provide more insights into electron motion and directly connect it to the structural dynamics of matter in real-time and space domains, opening the door for long-anticipated real-life attosecond science applications in quantum physics, chemistry, and biology.
阿秒光谱学的进展使得追踪和控制物质中的电子运动动力学成为可能,尽管它们在空间域中提供的关于电子动力学的信息还不足。因此,已经开发出超快电子和X射线成像工具,以实时和空间成像物质的超快动力学。这些成像工具的前沿时间分辨率在几十到一百飞秒的量级,限制了成像只能观察原子动力学,而无法实现电子运动成像。在此,我们在透射电子显微镜中获得了阿秒时间分辨率,我们将其命名为“阿秒显微镜”。我们通过对石墨烯中场驱动电子动力学的阿秒衍射测量证明了这种分辨率。这种阿秒成像工具将为电子运动提供更多见解,并在实时和空间域中将其与物质的结构动力学直接联系起来,为量子物理、化学和生物学中长期期待的实际阿秒科学应用打开大门。