Romero Juan Ignacio, Holubiec Mariana Inés, Tornatore Tamara Logica, Rivière Stéphanie, Hanschmann Eva-Maria, Kölliker-Frers Rodolfo Alberto, Tau Julia, Blanco Eduardo, Galeano Pablo, Rodríguez de Fonseca Fernando, Lillig Christopher Horst, Capani Francisco
Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Facultad de Medicina, UBA-CONICET, Marcelo T. de Alvear 2270, C1122AAJ, Ciudad de Buenos Aires, Argentina.
Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Oxid Med Cell Longev. 2017;2017:4162465. doi: 10.1155/2017/4162465. Epub 2017 Jun 15.
The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.
缺血再灌注事件后氧化还原信号的普遍破坏被认为是神经元死亡进而导致脑损伤的关键因素。硫氧还蛋白(Trx)家族蛋白控制氧化还原反应,并通过特定的氧化翻译后修饰确保蛋白质调节,这是细胞信号传导过程的一部分。Trx蛋白在缺氧/缺血性损伤后的表现、进展和恢复中发挥作用。在此,我们在新生大鼠缺氧/缺血模型中分析了损伤后外源性给予Grx2和Trx1的神经保护作用。对7日龄的Sprague-Dawley大鼠进行右侧颈总动脉结扎或假手术,随后暴露于氮气中。1小时后,给动物腹腔注射生理盐水、10mg/kg重组Grx2或Trx1,并在损伤后72小时实施安乐死。结果表明,给予Grx2以及在一定程度上给予Trx1,可减轻部分与围产期缺氧/缺血性损伤相关的神经元损伤,如谷氨酸兴奋性毒性、轴突完整性和星形胶质细胞增生。此外,这些治疗还预防了诱导性神经损伤的一些后果,如神经行为发育延迟。据我们所知,这是第一项证明重组Trx蛋白对新生大鼠缺氧/缺血结局具有神经保护作用的研究,这意味着其作为可能对抗新生大鼠缺氧/缺血损伤的神经保护剂具有临床应用潜力。