Gu Ligang, Kleiber Stefanie, Schmid Lena, Nebeling Felix, Chamoun Miriam, Steffen Julia, Wagner Jens, Fuhrmann Martin
German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
J Neurosci. 2014 Oct 15;34(42):13948-53. doi: 10.1523/JNEUROSCI.1464-14.2014.
Hippocampal function is important for learning and memory. During memory processing, hippocampal CA1 neurons play a crucial role by integrating excitatory synaptic input from CA3 and the entorhinal cortex. These neurons receive excitatory input almost exclusively on dendritic spines. The formation and elimination--structural plasticity--of dendritic spines reflect wiring changes within the hippocampal network. Despite the relevance of the hippocampus in learning and memory, most in vivo data on structural plasticity derive from cortical regions. We established a chronic hippocampal window approach using two-photon microscopy to visualize dendritic spines throughout all CA1 hippocampal layers and over a time course of weeks. Moreover, even granule cells in dentate gyrus could be reliably detected. We found that the spine density in stratum radiatum (∼1.1 per micrometer) remained stable over weeks. However, a small fraction (3.4%) of spines were formed and eliminated between imaging sessions, which demonstrated that spines of CA1 neurons exhibit structural plasticity in adult mice. In addition, we tested for possible inflammatory or behavioral side effects of hippocampal window implantation. Mice exhibited a transient increase in microgliosis and astrogliosis, which declined within a few weeks. We did not detect any difference in behavioral performance in an open-field and contextual fear-conditioning paradigm. In conclusion, hippocampal long-term two-photon imaging revealed structural plasticity of dendritic spines in CA1 pyramidal neurons. This approach may provide a powerful tool to analyze changes in neuronal network rewiring during hippocampal learning and memory processes in health and disease.
海马体功能对学习和记忆至关重要。在记忆处理过程中,海马体CA1神经元通过整合来自CA3和内嗅皮质的兴奋性突触输入发挥关键作用。这些神经元几乎仅在树突棘上接收兴奋性输入。树突棘的形成和消除——结构可塑性——反映了海马体网络内的布线变化。尽管海马体与学习和记忆相关,但大多数关于结构可塑性的体内数据来自皮质区域。我们建立了一种慢性海马体窗口方法,使用双光子显微镜在数周的时间过程中可视化整个海马体CA1层的树突棘。此外,甚至齿状回中的颗粒细胞也能被可靠检测到。我们发现辐射层中的棘密度(约每微米1.1个)在数周内保持稳定。然而,在成像 sessions 之间有一小部分(3.4%)的棘形成和消除,这表明成年小鼠中CA1神经元的棘表现出结构可塑性。此外,我们测试了海马体窗口植入可能的炎症或行为副作用。小鼠表现出小胶质细胞增生和星形胶质细胞增生的短暂增加,这在几周内下降。我们在旷场和情境恐惧条件范式中未检测到行为表现的任何差异。总之,海马体长期双光子成像揭示了CA1锥体神经元中树突棘的结构可塑性。这种方法可能为分析健康和疾病状态下海马体学习和记忆过程中神经网络布线的变化提供一个强大的工具。