Sevier Stuart A, Levine Herbert
Department of Physics and Astronomy, Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA.
Department of Bioengineering, Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA.
Phys Rev Lett. 2017 Jun 30;118(26):268101. doi: 10.1103/PhysRevLett.118.268101. Epub 2017 Jun 27.
The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.
转录的机械特性最近被证明在基因表达中起着核心作用。然而,目前缺乏对这一核心生物学过程的完整物理特性描述。在本信函中,我们引入了对转录基本物理元件的简单描述,其中RNA延伸、RNA聚合酶旋转和DNA超螺旋是相互耦合的。由此产生的框架描述了RNA延伸过程中发生的RNA聚合酶旋转和DNA超螺旋的相对量。推导了渐近行为,可用于通过实验提取转录未知的机械参数。通过添加依赖于DNA超螺旋的RNA聚合酶速度纳入了转录的机械限制。这种添加可能导致转录停滞,并讨论了对基因表达、染色质结构和基因组组织的影响。