Lesne Annick, Victor Jean-Marc, Bertrand Edouard, Basyuk Eugenia, Barbi Maria
Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.
Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.
Methods Mol Biol. 2018;1805:215-232. doi: 10.1007/978-1-4939-8556-2_11.
RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.
RNA聚合酶(RNAP)在其延伸阶段是分子马达的一个典型例子,其活性对DNA超螺旋高度敏感。在回顾了DNA超螺旋的基本特征后,我们讨论了超螺旋如何控制聚合酶的速度,同时其自身又受到聚合酶活性的修饰。这种耦合得到了单分子测量的支持。物理建模使我们能够定量描述超螺旋和扭转约束如何介导相邻聚合酶之间的机械耦合。在此基础上,我们得到了一种描述,它可能解释了RNAP队列的存在和功能。