Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa 252-5258, Japan;
Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.1905215118.
We study the effect of transcription on the kinetics of DNA supercoiling in three dimensions by means of Brownian dynamics simulations of a single-nucleotide-resolution coarse-grained model for double-stranded DNA. By explicitly accounting for the action of a transcribing RNA polymerase (RNAP), we characterize the geometry and nonequilibrium dynamics of the ensuing twin supercoiling domains. Contrary to the typical textbook picture, we find that the generation of twist by RNAP results in the formation of plectonemes (writhed DNA) some distance away. We further demonstrate that this translates into an "action at a distance" on DNA-binding proteins; for instance, positive supercoils downstream of an elongating RNAP destabilize nucleosomes long before the transcriptional machinery reaches the histone octamer. We also analyze the relaxation dynamics of supercoiled double-stranded DNA, and characterize the widely different timescales of twist diffusion, which is a simple and fast process, and writhe relaxation, which is much slower and entails multiple steps.
我们通过对双链 DNA 的单核苷酸分辨率的粗粒模型进行布朗动力学模拟,研究了转录对 DNA 超螺旋动力学的影响。通过明确考虑转录 RNA 聚合酶(RNAP)的作用,我们描述了随之产生的双超螺旋域的几何形状和非平衡动力学。与典型的教科书图像相反,我们发现 RNAP 产生扭曲会导致扭曲 DNA(plectoneme)在一定距离处形成。我们进一步证明,这会对 DNA 结合蛋白产生“远距离作用”;例如,在转录机制到达组蛋白八聚体之前,延伸中的 RNAP 下游的正超螺旋会使核小体不稳定。我们还分析了超螺旋双链 DNA 的松弛动力学,并描述了扭曲扩散的广泛不同的时间尺度,其中扭曲扩散是一个简单而快速的过程,而扭曲松弛则要慢得多,并且需要多个步骤。